Lecture 8: Reasoning with Inconsistent Knowledge 2-AIN-144/2-IKV-131 Knowledge Reperesentation & Reasoning

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

18 Apr 2013

Explosive Approach

The whole language is the only meaning of a contradictory knowledge base (falsity implies anything).

- Paraconsistent Approach Accept contradictory information and perform reasoning tasks that take it into account.
- Update/Belief Revision Approach Update/revise the knowledge base in order to regain consistency.

cross ← ¬ train ¬ cross ← not ¬ train listen ← not train, not ¬ train

A B > A B >

э

Definition (Literal)

A *classical literal* is an atom A or a classically negated atom $\neg A$. A *default literal* is a default negated classical literal *not* L. A *literal* is either a classical literal L or a default literal *not* L.

Definition (Extended Logic Program)

An extended logic program is a set P of rules

$$L_0 \leftarrow L_1, \ldots, L_m, not L_{m+1}, \ldots, not L_n$$

where $0 \leq n$ and L_0, \ldots, L_n are classical literals.

Definition (Interpretation)

An *interpretation* is a subset *I* of the extended Herbrand base $\mathcal{B}^{\neg} = \mathcal{B} \cup \{ \neg A \mid A \in \mathcal{B} \}.$

Given an interpretation I and an atom $A \in \mathcal{B}$,

- A is true iff $A \in I$ and $\neg A \notin I$
- A is *false* iff $A \notin I$ and $\neg A \in I$
- A is unknown iff $A \notin I$ and $\neg A \notin I$
- A is inconsistent iff $A \in I$ and $\neg A \in I$

Given an interpretation I and a classical literal $L \in \mathcal{B}^{\neg}$,

• $I \models L$ iff $L \in I$

• $I \models not L$ iff $L \notin I$

An interpretation *I* is *consistent* iff $\{A, \neg A\} \nsubseteq I$ for any $A \in \mathcal{B}$. An extended logic program is *consistent* iff it has a model.

-

Definition (Program Reduct)

Let P be a normal logic program and I be an interpretation. The reduct of P (with respect to I) is a positive logic program P' obtained from P by

- removing rules containing a default literal L in the body such that $I \not\models L$
- removing remaining default literals L, i.e. default literals with $I \models L$

Definition (Stable Model)

An interpretation I is a *stable model* of an extended logic program P if

- P^{I} is consistent and I is the least model of P^{I} , or
- P^{I} is inconsistent and $I = \mathcal{B}^{\neg}$.

▲ □ ▶ ▲ □ ▶ ▲

Proposition

Let P be an extended logic program. Then P has an inconsistent stable model iff P is inconsistent.

Proposition

Let P be an extended logic program. If P is inconsistent then \mathcal{B}^{\neg} is the only stable model of P.

Proposition

Stable models of an extended logic program are minimal models.

Example

The interpretation $I = \{a\}$ is a minimal model of the extended logic program $P = \{a \leftarrow not a\}$, but I is not a stable model of P.

・ 同 ト ・ ヨ ト ・ ヨ ト

Birds usually fly (except penguins, ostriches, birds with boken wings, \ldots).

$$\begin{array}{rcl} fly(X) &\leftarrow bird(X), not ab(X) \\ ab(X) &\leftarrow penguin(X) \\ ab(X) &\leftarrow ostrich(X) \\ ab(X) &\leftarrow bird(X), broken_wing(X) \\ fly(X) &\leftarrow bird(X), not \neg fly(X) \\ \neg fly(X) &\leftarrow penguin(X) \\ \neg fly(X) &\leftarrow ostrich(X) \\ \neg fly(X) &\leftarrow bird(X), broken_wing(X) \end{array}$$

- $person(peter) \leftarrow person(bob) \leftarrow$
- $person(alice) \leftarrow$
- $employee(peter) \leftarrow employee(bob) \leftarrow$

 \neg employee(X) \leftarrow person(X), not employee(X)

伺 ト イヨ ト イヨ ト

3

- $person(peter) \leftarrow$
 - $\textit{person(bob)} ~ \leftarrow$
- $person(alice) \leftarrow$
- $employee(peter) \leftarrow$
- \neg employee(bob) \leftarrow

A B A A B A

э

- $person(peter) \leftarrow$
 - $person(bob) \leftarrow$
- $person(alice) \leftarrow$
- $employee(peter) \leftarrow employee(bob) \leftarrow$
 - $\neg employee(X) \leftarrow person(X), not employee(X) \\ employee(X) \leftarrow person(X), not \neg employee(X) \\ \end{vmatrix}$

Consider the following logic program P:

$$a \leftarrow \neg a \leftarrow b \leftarrow b$$

 $I = \{a, \neg a, b, \neg b\} = B^{\neg}$ is the only answer set of P (because P is inconsistent).

Although we have contradictory information about a, we could say something reasonable about b.

Definition (Program Reduct)

Let P be an extended logic program and I be an interpretation. The reduct of P (with respect to I) is a positive logic program P^{I} obtained from P by

- removing rules containing a default literal L in the body such that I ⊭ L
- removing remaining default literals *L*, i.e. default literals with $I \models L$

Definition (Paraconsistent Stable Model)

An interpretation I is a *paraconsistent stable model* (abbreviately p-stable model) of an extended logic program P if I is the least model of P^{I} .

・ 同 ト ・ 三 ト ・

Properties of Paraconsistent Stable Models

Proposition

Consistent stable models are paraconsistent stable models.

Example

The interpretation $I = \{a, \neg a, b\}$ is a paraconsistent stable model of the extended logic program $P = \{a \leftarrow; \neg a \leftarrow; b \leftarrow\}$, but *I* is neither consistent nor a stable model of *P*.

Proposition

Paraconsistent stable models are minimal models.

Example

The interpretation $I = \{a\}$ is a minimal model of the extended logic program $P = \{a \leftarrow not \ a\}$, but I is not a paraconsistent stable model of P.

Stable Models vs. Paraconsistent Stable Models

Example $P = \left\{ \begin{array}{ccc} \neg a & \leftarrow \\ a & \leftarrow & \text{not } b \end{array} \right\}$

has the p-stable model $\{a, \neg a\}$, while it has no stable model.

Example

$$P = \left\{ \begin{array}{ccc} a & \leftarrow & \\ \neg a & \leftarrow & \\ b & \leftarrow & not \ b \end{array} \right\}$$

has the stable model \mathcal{B}^{\neg} , while it has no p-stable model.

伺 ト イヨト イヨト

Update/Belief Revision Approach

$$P_{1} = \left\{ \begin{array}{ccc} sleep \leftarrow not tv_on \\ watch_tv \leftarrow tv_on \\ tv_on \leftarrow \end{array} \right\}$$

$$P_2 = \left\{ \begin{array}{ccc} \neg tv_on \leftarrow power_failure \\ power_failure \leftarrow \end{array} \right\}$$

$$P_3 = \left\{ \neg \textit{power}_\textit{failure} \leftarrow
ight\}$$

< ∃ >

Definition (Dynamic Logic Program)

A dynamic logic program is a non-empty sequence of extended logic programs $\mathcal{P} = P_1 \oplus P_2 \oplus \cdots \oplus P_n$.

Definition (Dynamic Jusitified Update)

An interpretation I is a *dynamic justified update* of a dynamic logic program $\mathcal{P} = P_1 \oplus P_2 \oplus \cdots \oplus P_n$ if I is a stable model of $Residue(\mathcal{P}, I)$ where

$$\begin{array}{lll} \textit{Reject}(\mathcal{P}, \textit{I}, i) &= & \{r \in \textit{P}_i \mid \exists r' \in \textit{P}_j \colon i < j, \textit{I} \models \textit{body}(r'), \\ & \textit{head}(r') = \neg \textit{head}(r) \} \\ \textit{Residue}(\mathcal{P}, \textit{I}) &= & \bigcup_{1 \leq i \leq n} [\textit{P}_i \setminus \textit{Reject}(\mathcal{P}, \textit{I}, i)] \end{array}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$P_{1} = \left\{ \begin{array}{ccc} sleep \leftarrow not tv_on \\ watch_tv \leftarrow tv_on \\ tv_on \leftarrow \end{array} \right\}$$

$$I_1 = \{tv_on, watch_tv\}$$

$$\begin{array}{rcl} \textit{Reject}(\textit{P}_1,\textit{I}_1,1) &= & \emptyset \\ \textit{Residue}(\textit{P}_1,\textit{I}_1) &= & \textit{P}_1 \end{array}$$

< • • • • **•**

→ < Ξ > <</p>

æ

Example

$$P_{1} = \begin{cases} sleep \leftarrow not tv_on \\ watch_tv \leftarrow tv_on \\ tv_on \leftarrow \end{cases}$$

$$P_{2} = \begin{cases} \neg tv_on \leftarrow power_failure \\ power_failure \leftarrow \end{cases}$$

$$I_2 = \{power_failure, \neg tv_on, sleep\}$$

 $\begin{aligned} & \text{Reject}(P_1 \oplus P_2, I_2, 2) &= \emptyset \\ & \text{Reject}(P_1 \oplus P_2, I_2, 1) &= \{tv_on \leftarrow\} \\ & \text{Residue}(P_1 \oplus P_2, I_2) &= (P_1 \setminus \{tv_on \leftarrow\}) \cup P_2 \end{aligned}$

・ 戸 ・ ・ ヨ ・ ・ ・ ヨ ・

= nar

Example

$$P_{1} = \begin{cases} sleep \leftarrow not tv_on \\ watch_tv \leftarrow tv_on \\ tv_on \leftarrow \end{cases} \\ P_{2} = \begin{cases} \neg tv_on \leftarrow power_failure \\ power_failure \leftarrow \end{cases} \\ P_{3} = \{ \neg power_failure \leftarrow \} \end{cases}$$

$$I_3 = \{\neg \textit{power_failure}, \textit{tv_on}, \textit{watch_tv}\}$$