
Lecture 8: Reasoning with Inconsistent Knowledge
2-AIN-144/2-IKV-131 Knowledge Reperesentation & Reasoning

Martin Baláž, Martin Homola

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

18 Apr 2013

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Reasoning with Inconsistent Knowledge

1 Explosive Approach
The whole language is the only meaning of a contradictory
knowledge base (falsity implies anything).

2 Paraconsistent Approach
Accept contradictory information and perform reasoning tasks
that take it into account.

3 Update/Belief Revision Approach
Update/revise the knowledge base in order to regain
consistency.

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Example

train ∅ ¬ train

not ¬ train

not train

cross ← ¬ train
¬ cross ← not ¬ train
listen ← not train, not ¬ train

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Syntax of Extended Logic Programs

Definition (Literal)

A classical literal is an atom A or a classically negated atom ¬A.
A default literal is a default negated classical literal not L. A literal
is either a classical literal L or a default literal not L.

Definition (Extended Logic Program)

An extended logic program is a set P of rules

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln

where 0 ≤ n and L0, . . . , Ln are classical literals.

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Semantics of Extended Logic Programs

Definition (Interpretation)

An interpretation is a subset I of the extended Herbrand base
B¬ = B ∪ {¬A | A ∈ B}.

Given an interpretation I and an atom A ∈ B,
A is true iff A ∈ I and ¬A 6∈ I

A is false iff A 6∈ I and ¬A ∈ I

A is unknown iff A 6∈ I and ¬A 6∈ I

A is inconsistent iff A ∈ I and ¬A ∈ I

Given an interpretation I and a classical literal L ∈ B¬,
I |= L iff L ∈ I

I |= not L iff L 6∈ I

An interpretation I is consistent iff {A,¬A} * I for any A ∈ B.
An extended logic program is consistent iff it has a model.

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Stable Model (Answer Set)

Definition (Program Reduct)

Let P be a normal logic program and I be an interpretation. The
reduct of P (with respect to I) is a positive logic program P I

obtained from P by
removing rules containing a default literal L in the body such
that I 6|= L

removing remaining default literals L, i.e. default literals with
I |= L

Definition (Stable Model)

An interpretation I is a stable model of an extended logic program
P if

P I is consistent and I is the least model of P I , or
P I is inconsistent and I = B¬.

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Properties of Stable Models

Proposition
Let P be an extended logic program. Then P has an inconsistent
stable model iff P is inconsistent.

Proposition
Let P be an extended logic program. If P is inconsistent then B¬ is
the only stable model of P .

Proposition
Stable models of an extended logic program are minimal models.

Example

The interpretation I = {a} is a minimal model of the extended
logic program P = {a← not a}, but I is not a stable model of P .

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Exceptions in Answer Set Programming

Birds usually fly (except penguins, ostriches, birds with boken
wings, . . .).

fly(X) ← bird(X), not ab(X)
ab(X) ← penguin(X)
ab(X) ← ostrich(X)
ab(X) ← bird(X), broken_wing(X)

fly(X) ← bird(X), not ¬ fly(X)
¬ fly(X) ← penguin(X)
¬ fly(X) ← ostrich(X)
¬ fly(X) ← bird(X), broken_wing(X)

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Closed World Assumption

person(peter) ←
person(bob) ←
person(alice) ←

employee(peter) ←
employee(bob) ←

¬ employee(X) ← person(X), not employee(X)

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Open World Assumption

person(peter) ←
person(bob) ←
person(alice) ←

employee(peter) ←
¬ employee(bob) ←

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Reasoning with Incomplete Knowledge

person(peter) ←
person(bob) ←
person(alice) ←

employee(peter) ←
employee(bob) ←

¬ employee(X) ← person(X), not employee(X)
employee(X) ← person(X), not ¬ employee(X)

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Paraconsistent Approach

Consider the following logic program P :

a ←
¬ a ←
b ←

I = {a,¬ a, b,¬ b} = B¬ is the only answer set of P (because P is
inconsistent).

Although we have contradictory information about a, we could say
something reasonable about b.

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Paraconsistent Stable Model

Definition (Program Reduct)

Let P be an extended logic program and I be an interpretation.
The reduct of P (with respect to I) is a positive logic program P I

obtained from P by
removing rules containing a default literal L in the body such
that I 6|= L

removing remaining default literals L, i.e. default literals with
I |= L

Definition (Paraconsistent Stable Model)

An interpretation I is a paraconsistent stable model (abbreviately
p-stable model) of an extended logic program P if I is the least
model of P I .

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Properties of Paraconsistent Stable Models

Proposition
Consistent stable models are paraconsistent stable models.

Example

The interpretation I = {a,¬ a, b} is a paraconsistent stable model
of the extended logic program P = {a←;¬ a←; b ←}, but I is
neither consistent nor a stable model of P .

Proposition
Paraconsistent stable models are minimal models.

Example

The interpretation I = {a} is a minimal model of the extended
logic program P = {a← not a}, but I is not a paraconsistent
stable model of P .

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Stable Models vs. Paraconsistent Stable Models

Example

P =

{
¬ a ←
a ← not b

}
has the p-stable model {a,¬ a}, while it has no stable model.

Example

P =

a ←
¬ a ←
b ← not b

has the stable model B¬, while it has no p-stable model.

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Update/Belief Revision Approach

P1 =

sleep ← not tv_on

watch_tv ← tv_on
tv_on ←

P2 =

{
¬ tv_on ← power_failure

power_failure ←

}

P3 =
{
¬ power_failure ←

}

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Updates of Logic Programs

Definition (Dynamic Logic Program)

A dynamic logic program is a non-empty sequence of extended logic
programs P = P1 ⊕ P2 ⊕ · · · ⊕ Pn.

Definition (Dynamic Jusitified Update)

An interpretation I is a dynamic justified update of a dynamic logic
program P = P1 ⊕ P2 ⊕ · · · ⊕ Pn if I is a stable model of
Residue(P, I) where

Reject(P, I , i) = {r ∈ Pi | ∃r ′ ∈ Pj : i < j , I |= body(r ′),
head(r ′) = ¬ head(r)}

Residue(P, I) =
⋃

1≤i≤n
[Pi \ Reject(P, I , i)]

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Example

P1 =

sleep ← not tv_on

watch_tv ← tv_on
tv_on ←

I1 = {tv_on,watch_tv}

Reject(P1, I1, 1) = ∅
Residue(P1, I1) = P1

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Example

P1 =

sleep ← not tv_on

watch_tv ← tv_on
tv_on ←

P2 =

{
¬ tv_on ← power_failure

power_failure ←

}

I2 = {power_failure,¬ tv_on, sleep}

Reject(P1 ⊕ P2, I2, 2) = ∅
Reject(P1 ⊕ P2, I2, 1) = {tv_on←}
Residue(P1 ⊕ P2, I2) = (P1 \ {tv_on←}) ∪ P2

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

Example

P1 =

sleep ← not tv_on

watch_tv ← tv_on
tv_on ←

P2 =

{
¬ tv_on ← power_failure

power_failure ←

}
P3 =

{
¬ power_failure ←

}
I3 = {¬power_failure, tv_on,watch_tv}

Reject(P1 ⊕ P2 ⊕ P3, I3, 3) = ∅
Reject(P1 ⊕ P2 ⊕ P3, I3, 2) = {power_failure ←}
Reject(P1 ⊕ P2 ⊕ P3, I3, 1) = ∅
Residue(P1 ⊕ P2 ⊕ P3, I3) = P1 ∪ (P2 \ {power_failure ←}) ∪ P3

Martin Baláž, Martin Homola Lecture 8: Reasoning with Inconsistent Knowledge

