Lecture 8: Reasoning with Inconsistent Knowledge 2-AIN-144/2-IKV-131 Knowledge Reperesentation & Reasoning

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

18 Apr 2013

つくへ

1 Explosive Approach

The whole language is the only meaning of a contradictory knowledge base (falsity implies anything).

- ² Paraconsistent Approach Accept contradictory information and perform reasoning tasks that take it into account.
- **3** Update/Belief Revision Approach Update/revise the knowledge base in order to regain consistency.

つくい

 $\csc \leftarrow \neg \text{train}$ $\neg \textit{cross} \leftarrow \textit{not} \neg \textit{train}$ $\mathsf{listen} \leftarrow \mathsf{not train}, \mathsf{not} \neg \mathsf{train}$

4 0 8

Þ

∢ 何 ▶ → ヨ ▶ → ヨ ▶ →

Definition (Literal)

A classical literal is an atom A or a classically negated atom $\neg A$. A default literal is a default negated classical literal not L. A literal is either a classical literal L or a default literal not L.

Definition (Extended Logic Program)

An extended logic program is a set P of rules

$$
L_0 \leftarrow L_1, \ldots, L_m, not \ L_{m+1}, \ldots, not \ L_n
$$

where $0 \leq n$ and L_0, \ldots, L_n are classical literals.

Definition (Interpretation)

An *interpretation* is a subset *I* of the extended Herbrand base $\mathcal{B}^- = \mathcal{B} \cup \{\neg A \mid A \in \mathcal{B}\}.$

Given an interpretation I and an atom $A \in \mathcal{B}$,

- \bullet A is true iff $A \in I$ and $\neg A \notin I$
- A is false iff $A \notin I$ and $\neg A \in I$
- A is unknown iff $A \notin I$ and $\neg A \notin I$
- A is inconsistent iff $A \in I$ and $\neg A \in I$

Given an interpretation *I* and a classical literal $L \in \mathcal{B}^{-}$,

 \bullet $I \models L$ iff $L \in I$

 \bullet $I \models not L$ iff $L \notin I$

An interpretation *I* is consistent iff $\{A, \neg A\} \nsubseteq I$ for any $A \in \mathcal{B}$. An extended logic program is consistent iff it has a model.

 QQ

性

医阿里氏阿里氏

Definition (Program Reduct)

Let P be a normal logic program and I be an interpretation. The reduct of P (with respect to 1) is a positive logic program P^1 obtained from P by

- \bullet removing rules containing a default literal L in the body such that $I \not\models L$
- **•** removing remaining default literals L, i.e. default literals with $I \models L$

Definition (Stable Model)

An interpretation *I* is a *stable model* of an extended logic program P if

- P^I is consistent and *I* is the least model of P^I , or
- P^I is inconsistent and $I = B^-$.

イロメ イ母メ イヨメ イヨメ

Ξ

Proposition

Let P be an extended logic program. Then P has an inconsistent stable model iff P is inconsistent.

Proposition

Let P be an extended logic program. If P is inconsistent then \mathcal{B}^- is the only stable model of P.

Proposition

Stable models of an extended logic program are minimal models.

Example

The interpretation $I = \{a\}$ is a minimal model of the extended logic program $P = \{a \leftarrow not a\}$, but *I* is not a stable model of *P*.

- イ伊 ト イヨ ト イヨ ト

 QQ

Birds usually fly (except penguins, ostriches, birds with boken wings, . . .).

fly(X) ← bird(X), not ab(X) ab(X) ← penguin(X) ab(X) ← ostrich(X) ab(X) ← bird(X), broken_wing(X) fly(X) ← bird(X), not ¬ fly(X) ¬ fly(X) ← penguin(X) ¬ fly(X) ← ostrich(X) ¬ fly(X) ← bird(X), broken_wing(X)

 QQ

医毛囊 医牙骨

- $person(peter) \leftarrow$ $person(bob) \leftarrow$
	- $person(alice) \leftarrow$
- $employee(peter) \leftarrow$ $emplovee(bob) \leftarrow$

 \neg employee(X) \leftarrow person(X), not employee(X)

 η an

∍

∢ 何 ≯ → (ヨ ≯ → (ヨ ≯ →

- $person(peter) \leftarrow$
	- $person(bob) \leftarrow$
- $person(alice) \leftarrow$
- $emplyee(peter) \leftarrow$
- \neg employee(bob) \leftarrow

 $-10⁻¹⁰$

| 何 ▶ → ヨ ▶ → ヨ ▶ →

 299

э

- $person(peter) \leftarrow$
	- $person(bob) \leftarrow$
- $person(alice) \leftarrow$
- $employee(peter) \leftarrow$ $emplovee(bob) \leftarrow$
	- \neg employee $(X) \leftarrow$ person (X) , not employee (X) $emplovee(X) \leftarrow person(X)$, not \neg employee (X)

 2990

∢ 何 ≯ → (ヨ ≯ → (ヨ ≯ →

Consider the following logic program P:

$$
\begin{array}{rcl} a & \leftarrow & \\ \neg a & \leftarrow & \\ b & \leftarrow & \end{array}
$$

 $I = \{a, \neg a, b, \neg b\} = \mathcal{B}$ is the only answer set of P (because P is inconsistent).

Although we have contradictory information about a, we could say something reasonable about b.

つくい

Definition (Program Reduct)

Let P be an extended logic program and I be an interpretation. The reduct of P (with respect to 1) is a positive logic program P^{\prime} obtained from P by

- removing rules containing a default literal L in the body such that $I \not\models L$
- removing remaining default literals L, i.e. default literals with $I \models L$

Definition (Paraconsistent Stable Model)

An interpretation *I* is a *paraconsistent stable model* (abbreviately p-stable model) of an extended logic program P if I is the least model of $P¹$.

 $\left\langle \left\langle \left\langle \left\langle \left\langle \mathcal{H} \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle +\left\langle \left\langle \left\langle \mathcal{H} \right\rangle \right\rangle \right\rangle \right\rangle +\left\langle \left\langle \left\langle \left\langle \mathcal{H} \right\rangle \right\rangle \right\rangle \right\rangle +\left\langle \left\langle \left\langle \mathcal{H} \right\rangle \right\rangle \right\rangle \right)$

つくい

Properties of Paraconsistent Stable Models

Proposition

Consistent stable models are paraconsistent stable models.

Example

The interpretation $I = \{a, \neg a, b\}$ is a paraconsistent stable model of the extended logic program $P = \{a \leftarrow; \neg a \leftarrow; b \leftarrow\}$, but *I* is neither consistent nor a stable model of P.

Proposition

Paraconsistent stable models are minimal models.

Example

The interpretation $I = \{a\}$ is a minimal model of the extended logic program $P = \{a \leftarrow not a\}$, but *I* is not a paraconsistent stable model of P.

4 向 ト

 QQ

Stable Models vs. Paraconsistent Stable Models

Example $P = \begin{cases} \n\begin{array}{ccc} \n\begin{array}{ccc} \n\end{array} & \leftarrow \\ \n\end{cases} \n\end{cases}$ $a \leftarrow \textit{not } b$ \mathcal{L} has the p-stable model $\{a, \neg a\}$, while it has no stable model.

Example

$$
P = \left\{ \begin{array}{rcl} a & \leftarrow & \\ \neg \, a & \leftarrow & \\ b & \leftarrow & \mathit{not} \, b \end{array} \right\}
$$

has the stable model \mathcal{B}^{\neg} , while it has no p-stable model.

- 何 ▶ → ヨ ▶ → ヨ ▶

Update/Belief Revision Approach

$$
P_1 = \left\{\begin{array}{rcl} sleep & \leftarrow & not \, tv_on \\ watch_tv & \leftarrow & tv_on \\ tv_on & \leftarrow & \end{array}\right\}
$$

$$
P_2 = \left\{ \begin{array}{ccc} \neg \text{ tv_on} & \leftarrow & \text{power_failure} \\ \text{power_failure} & \leftarrow & \end{array} \right\}
$$

$$
P_3 = \{ \neg power_failure \leftarrow \}
$$

 \overline{a}

おうす 国内

э

×

э

Definition (Dynamic Logic Program)

A dynamic logic program is a non-empty sequence of extended logic programs $\mathcal{P} = P_1 \oplus P_2 \oplus \cdots \oplus P_n$.

Definition (Dynamic Jusitified Update)

An interpretation *I* is a *dynamic justified update* of a dynamic logic program $P = P_1 \oplus P_2 \oplus \cdots \oplus P_n$ if I is a stable model of $Residue(\mathcal{P}, I)$ where

$$
Reject(P, I, i) = \{r \in P_i \mid \exists r' \in P_j : i < j, l \models body(r'),
$$

\n
$$
head(r') = \neg head(r)\}
$$

\n
$$
Residue(P, I) = \bigcup_{1 \le i \le n} [P_i \setminus Reject(P, I, i)]
$$

- 何 ▶ → ヨ ▶ → モ ▶ →

$$
P_1 = \left\{\begin{array}{rcl} sleep & \leftarrow & not\, tv_on \\ watch_tv & \leftarrow & tv_on \\ tv_on & \leftarrow & \end{array}\right\}
$$

$$
\mathit{l}_1 = \{ \mathit{tv_on}, \mathit{watch_tv} \}
$$

$$
Reject(P_1, I_1, 1) = \emptyset
$$

$$
Residue(P_1, I_1) = P_1
$$

K ロ K K 御 K K 君 K K 君

目

 $\,$

Example

$$
P_1 = \left\{\n\begin{array}{rcl}\n\text{sleep} & \leftarrow & \text{not } \text{tv_on} \\
\text{watch_tv} & \leftarrow & \text{tv_on} \\
\text{tv_on} & \leftarrow & \text{power_failure} \\
\end{array}\n\right\}
$$
\n
$$
P_2 = \left\{\n\begin{array}{rcl}\n\neg \text{tv_on} & \leftarrow & \text{power_failure} \\
\text{power_failure} & \leftarrow & \text{f} \\
\end{array}\n\right\}
$$

$$
\textit{l}_2 = \{power_failure, \neg\, tv_on, sleep\}
$$

 $Reject(P_1 \oplus P_2, I_2, 2) = \emptyset$ $Reject(P_1 \oplus P_2, I_2, 1) = \{tv \text{ on } \leftarrow\}$ $Residue(P_1 \oplus P_2, I_2) = (P_1 \setminus \{tv \text{ on } \leftarrow\}) \cup P_2$

KEL KALK KELKEL KARK

Example

$$
P_1 = \left\{\n\begin{array}{rcl}\n\text{sleep} & \leftarrow & \text{not } \text{tv_on} \\
\text{watch_tv} & \leftarrow & \text{tv_on} \\
\text{tv_on} & \leftarrow & \\
P_2 & = & \left\{\n\begin{array}{rcl}\n\neg \text{ tv_on} & \leftarrow & \text{power_failure} \\
\text{power_failure} & \leftarrow & \\
P_3 & = & \left\{\n\begin{array}{rcl}\n\neg \text{power_failure} & \leftarrow & \\
\end{array}\n\end{array}\n\right\}\n\end{array}\n\right\}
$$

$$
\mathit{l}_3 = \{\neg power_failure, tv_on, watch_tv\}
$$

 $Reject(P_1 \oplus P_2 \oplus P_3, I_3, 3) = \emptyset$ $Reject(P_1 \oplus P_2 \oplus P_3, I_3, 2) = \{power \ failure \leftarrow\}$ $Reject(P_1 \oplus P_2 \oplus P_3, I_3, 1) = \emptyset$ $Residue(P_1 \oplus P_2 \oplus P_3, I_3) = P_1 \cup (P_2 \setminus \{power \ failure \leftarrow\}) \cup P_3$ QQ **NORTH AT A**