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Lesson 02 Outline

 Key-framing and parameter interpolation
 Skeleton Animation
 Forward and inverse Kinematics
 Procedural techniques
 Motion capture



  

Key-framing

and parameter interpolation



  

Key-frame base Animation

 Comes from traditional frame-based animations
 Trivial principle

 Define object states (positions...) only in KEY frames
 Let the computer calculate the in-between frames by 

interpolating state variables (positions...)
 Linterpolation types

 Simple linear interpolation (insufficient in most scenarios)
 Spline (cubic bezier) interpolation (commonly used)
 Spherical (linear/bezier) interpolation (for quaternions)



  

Parameter interpolation

 Structure of key-frame: Fi = (ti , pi)
 ti: Time of i-th frame 
 pi: Parameter value of i-th frame (position, color...)

 Problem
 Having values in key-frames how to get reasonable values 

for in-between frames ?
 Solution  

 Given time t (ti < t < ti+1) and frames (Fi, Fi+1)
 Find parameter value p = I(t, Fi, Fi+1)
 Where I is some frame interpolation funtion

 Nearest neighbor interpolation

 Linear interpolation

 Spline and many more



  

Parameter interpolation

 Frame Interpolation algorithm
 Store key-frames Fi sorted by the time value ascending
 Given time t, use binary search to find interval (Fi, Fi+1)
 Calculate parameter p = I(t, Fi, Fi+1) with interpolation

 Optimization
 When time changes coherent: t' = t + dt where dt is small
 Use interpolation evaluator instead of binary search

 Interpolation evaluator (similar to iterator)
 Simple additional structure to store current key-frame and 

estimate next key-frame
 Store intermediate results of previous interpolation
 etc



  

Nearest neighbor interpolation

 Method: 
p = I(t, Fi, Fi+1) = Fi

 Pros
 Very fast evaluation
 Simple implementation

 Cons
 Sharp discontinuities (non-smooth)
 Non-physical motion
 Visually distracting



  

Linear Interpolation

 Method (LERP)

 Pros
 Continuous motion
 Fast and easy calculation and implementation

 Cons
 Motion is only linear
 Non-physical 
 First time derivation of motion is discontinuous

p=1−spi−s pi1 where s=
t−t i
t i1−t i



  

Cubic Bezier Interpolation

 N-th Bezier interpolation curve
 Parameter s (0 <= s <= 1) is not time !!!

 Cubic (3-th) Bezier interpolation curve
 Parameter s (0 <= s <= 1) is not time !!!

Bn s=∑
i=0

n

ni 1−sn−i si pi

B3s=1−s3p01−s2 s p11−s s2p2s
3p3



  

Cubic Bezier Interpolation

 Quadratic Bezier
 Quadratic (s^2) equation
 3 control points

 Cubic Bezier
 Cubic (s^3) equation
 4 control points

 Quartic Bezier
 Quartic (s^4) equation
 5 control points



  

Bezier Interpolation in key-framing



  

Bezier Interpolation in key-framing

Current time t

Find curve parameter s for time t
Calculate curve value B(s)



  

Curve interpolation in key-framing

 Curve parameter s is not time t (s != t)
 1) For given time t find curve parameter s

 No trivial analytic solution for cubic curves
 Solve it numerically using binary search (can be slow)

 Optimization for (1)
 Fix number of iterations, than use linear interpolation for s
 Precompute values into cache, that use neighbor interpol. 

 2) With parameter s calculate curve value B(s)
 Evaluate parametric Bezier curve



  

Orientation in 3D

 Orientation in 3D has no natural representation
 There are more common definitions

 Orientation Matrix (Euler Angles)
 Orientation Axis and Angle
 Orientation Quaternion

 Each type has its pros/cons



  

Orientation Matrix (Euler Angles)

 Orientation is defined as 3 rotation angles         
(Ax, Ay, Az) around X-axis, Y-axis and Z-axis

 Orientation is represented as composition of 3 
orthonormal rotation matrices (Rx, Ry, Rz) around 
(X, Y, Z) axes → R = Rx*Ry*Rz 

 Not unique representation and “Gimbal Lock”
 Complicated decomposition (matrix → angles)

R xax =1 0 0
0 cos a x −sin a x
0 sin a x cos a x R y a y =cosa y 0 sin a y 

0 1 0
−sin a y  0 cosa y R z a z=cos a z −sin az 0

sin a z cosa z 0
0 0 1



  

Rotation Axis and Angle

 Every rotation in 3D can be defined by its
 Axis u=(x,y,z) (a direction that is left fixed by the rotation)
 Angle a (the amount by which the rotation turns)

 Axis-Angle → Rotation Matrix

X
X

X
Axis

AngleR=PI−Pcos a −Q sin a 

P=u xu x u xu y u xu z
u yu x u yu y u yu z
u zu x u zu y u zu z=u uT I=1 0 0

0 1 0
0 0 1 Q= 0 −u z u y

u z 0 −u x
−u y u x 0 



  

Quaternions

 Similar to complex numbers
 Defined as: q = w + xi + yj + zk    |    i2 = j2 = k2 = ijk = -1
 Add: p+q = (w+w) + (x+x')i + (y+y')j + (z+z')k
 Multiply: pq = (w + xi + yj + zk)(w' + x'i + y'j + z'k) = 

(ww'-xx'-yy'-zz') + (wx' xw' yz' zy')i + (wy' xz' yw' zf')j + (wz' xy' yx' zw')k

 More info on wikipedia



  

Quaternions for spatial rotations

 Given unit rotation axis u=(x,y,z) |u|=1 and angle a
 Define quaternion q as: q = cos(a/2) + u sin(a/2)
 Any vector v can be rotated around u by angle a as

v' = qvq-1 (quaternion rotation formula)
 Here v = (a,b,c) represents quaternion 0 + ai + bj + ck
 See proof in wikipedia – by converting into Rodrigues formula

 Rotation composition of p and q is r = pq 
 rvr-1 = (pq)v(pq)-1 = pqvq-1p-1 = q(pvp-1)q-1

 Inverse rotation of q in q-1

 v = (q-1q)v(q-1q)-1 = q-1qvqq-1 = q-1(qvq-1)q
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Quaternions: definition 

 In condensed notation the quaternion can be expressed as q = (s,v) where s 
is scalar part of q and  v is the vector part with axes i, j, k. 

 A unit quaternion (|qu| = 1) can be noted as  
 The conjugate of quaternion q = (s,v) is equal to  
 For a unit quaternion qu we have 

 
 

 In the context of orientation interpolation, quaternion angle 2θ of qu  can 
be interpreted as the rotation angle while the vector v is the rotation axis. 

),( v−= sq

1-
uu  q  q =

 sincos )) (), ( ( qu vθθ=

 Definition: A quaternion is noted  q = s + vxi + vyj + vzk  
 with s, vx, vy, vz: real numbers and i, j, k: imaginary numbers such that 
i2=j2=k2=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j. 



  

Spherical linear interpolation

 Given two unit vectors v
0
 and v

1
 and interpolation 

parameter t in (0,1) the slerp in defined as

 Where angle a = cos-1(v
0
v

1
) is the angle between v

0
 and v

1

 Applied to unit quaternions, slerp produces 
shortest rotation with constant angular velocity 
between orientations q

0
 and q

1

slerpt , v0 ,v1=
sin 1−t a 
sin a

v0
sin ta 
sin a 

v1
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Quaternions: higher order interpolants 
 Spherical linear interpolation between more than two key orientations 

produces jerky, sharply changing motion across the keys. Higher order of 
continuity is required, e.g., spherical equivalent of the cubic spline. 

 A simple example of such construction is Catmull-Rom spline which  
passes through the key points and has C1 continuity. 
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Catmull-Rom spherical interpolation 
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Quaternions           rotation matrices 
 In animation system each key is usually represented as a single orientation 

matrix. This sequence of matrices will be then converted into a sequence of 
quaternions. Interpolation between key quaternions is performed and this 
produces a sequence of in-between quaternions which are then converted 
back to rotation matrices. The matrices are then applied  to the object. 

   

 To convert from an orthogonal rotation matrix to a 
unit quaternion, we observe that if  M = [mij]  is the 
affine transformation in homogeneous form: 

 trace (M) = 4 - 4(X2 + Y2 + Z2 ) = 4 W2  

 and then X, Y, Z can be calculated as: 

A unit quaternion q = (W, (X,Y,Z)) is equivalent to the matrix: 
 



  

Skeleton 

Skinning



  

Skeleton Animation

 Inspired by skeleton system of animals
 Basic work-flow

 Create skeleton – connect bones into hierarchy - rigging
 Create skin – usually a polygonal mesh of animal
 Create vertex-bone weights - skinning 
 Animate skeleton using any animation technique - posing

 Skeleton is usually a articulated structure of 
bones

 Skinning weights define how much each vertex 
“belongs” to a given bone



  

Rigging skeleton

 Rigging
 Create bone hierarchy – skeleton – in  initial pose

 Bone definition
 Name of bone
 Reference to parent bone (none for root bone)
 Set of child bone references (empty for leaves)
 Local transformation (position, orientation, scale) 
 Length of bone (direction in local Z-axis)
 Various translation/rotation limits (e.g. knee joint)
 IK type – start / mid / end effector
 Weighting type – (cylinder, capsule, sphere...)



  

Complete skeleton example



  

Skinning skeleton

 Matrix palette skinning technique
 Each vertex of mesh (skin) has a small set of 

skinning weights W = (w
0
,w

1
,w

2
,w

3
)

 Each weight w
i
 belongs to one (close) bone B

i
 with 

a world transformation matrix M
i

 The final vertex transformation is

v ' i=
1

∑
k=0

n

wk
∑
k=0

n

wkMk v i



  

Skin, Skeleton and Weights



  

Posing skeleton

 Only bone transformations are animated
 Any animation technique can be used
 World transformation Q of each bone is 

composed recursively from parent transform
 Q

i
 = M

i
Q

i-1
 = M

i-1
M

i-2
 … M

0

 where Q
i
 is parent of Q

i+1

 For leaf bones Q
i
 = M

i



  

Posing skinned skeleton



  Forward and  inverse  Kinematicsinverse



  

Forward Kinematics

 Forward (direct) kinematics
 Put objects into transformation hierarchy
 Animate each transformation directly (eg by key-framing)
 Problem: Figure wants to reach a cup on a table by hand, but 

how to interpolate transformations to get natural motion ?



  

Inverse Kinematics

 Overall strategy
 Set goal configuration of end effector
 Calculate interior bone angles

 Analytical solutions: when linkage is simple 
enough, directly calculate joint angles in 
configuration that satisfies goal

 Numerical solutions: complex linkages. At each 
time slice, determine joint movements that take 
you in direction of goal position



  

Inverse Kinematics Scenario

Goal

End Effector

θ1

θ2
θ3L1

L2
L3



  

Inverse Kinematics - Minimization

Solution = Minimum error

Any algorithm you can think
of, for finding the lowest
points on graphs can be
used for Inverse Kinematics.



  

Inverse Kinematics - Minimization

 Simple gradient minimization – find better 
configuration gradient of angles



  

IK – Gradient by Measurement

 Pseudo-code: (for 2d, 2 angles)
distance = GetDistance(a,b)
while (Distance > 0.1) {
 da = GetDistance(a+1,b) – GetDistance(a-1,b);
 da = GetDistance(a,b+1) – GetDistance(a,b-1);
 A -= da; B -= db;
 Distance = GetDistance(a,b)

}
 GetDistance(a,b){

 Move joints using angles a and b, than return |target - tip|

}



  

IK – Gradient by Calculation

 Pseudo-code:
for each joint {
 if 3d: axis = joint rotation axis
 if 2d: axis = (0,0,1)
 toTip = tip – jointCenter
 toTarget = target – tip
 moveDir = cross(toTip, axis)
 gradient = dot(moveDir, toTarget)
 alpha -= gradient

}
 Force based algorithm



  

Procedural
Animation

 L-Systems
 Fractals



  

L-Systems

 Lindenmayer system (L-system) is a parallel 
rewriting system (formal grammar)
 Most famously used to model the growth processes of plants

 Formal definition: L = (N,T,S,P)
 L – L-system is a 4-tuple
 N – Set of non-terminal letters (big letters)
 T – Set of terminal letters (small letters)
 P – Set of production rules

 Production Rule:
 Non-terminal → (non)terminal string
 Various sub-types exists (original: D0L system)



  

Example 1: Algae

 Lindenmayer's original L-system
 for modelling the growth of algae.

 L = ({A,B}, {}, A, {(A → AB), (B → A)}
 Grammar results:

 n = 0 : A
 n = 1 : AB
 n = 2 : ABA
 n = 3 : ABAAB
 n = 4 : ABAABABA
 n = 5 : ABAABABAABAAB
 n = 6 : ABAABABAABAABABAABABA
 n = 7 : ABAABABAABAABABAABABAABAABABAABAAB



  

Example 1: Algae

 n=0: start (axiom/initiator)

 n=1: the initial single A spawned into AB by rule (A → AB), rule (B → A) couldn't be applied

 n=2: former string AB with all rules applied, A spawned into AB again, former B turned into A

 n=3: note all A's producing a copy of themselves in the first place, then a B, which turns ...

 n=4: ... into an A one generation later, starting to spawn/repeat/recurse then

n=0:         A           
            / \
n=1:       A   B         
          /|    \
n=2:     A B     A       
        /| |     |\
n=3:   A B A     A B     
      /| | |\    |\ \
n=4: A B A A B   A B A   



  

Example: Sierpinski triangle

 L = ({A, B}, {+, -}, A, {(A → B-A-B), (B → A+B+A)}
 Parameters: (angle = 60°)
 A, B: both mean "draw forward",
 +: means "turn left by angle" (turtle graphics)
 -: means "turn right by angle" (turtle graphics)
 The angle changes sign at each iteration so that 

the base of the triangular shapes are always in 
the bottom (they would be in the top and bottom, 
alternatively, otherwise)



  

Example: Sierpinski triangle



  

Motion Capture



  

Motion Capture

 Inspired by Rotoscoping, capturing frames by 
cameras 

 Marker-based work-flow
 Attach reflex markers on key parts of actors body (knees...)
 Create skeleton and assign marker points
 Capture video-sequence of moving actor (multiple cameras)
 Use image based techniques to find 3d position of markers
 Animate the skeleton by the reconstructed path data

 Pros: faster, simpler, more precise
 Cons: Marker retouching, complex motion = many 

markers



  

the 
End

that was enough...
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