

Basic methods in
Computer AnimationJuraj O

nderik | onderik@sccg.sk

Lesson 02

Lesson 02 Outline

 Key-framing and parameter interpolation
 Skeleton Animation
 Forward and inverse Kinematics
 Procedural techniques
 Motion capture

Key-framing

and parameter interpolation

Key-frame base Animation

 Comes from traditional frame-based animations
 Trivial principle

 Define object states (positions...) only in KEY frames
 Let the computer calculate the in-between frames by

interpolating state variables (positions...)
 Linterpolation types

 Simple linear interpolation (insufficient in most scenarios)
 Spline (cubic bezier) interpolation (commonly used)
 Spherical (linear/bezier) interpolation (for quaternions)

Parameter interpolation

 Structure of key-frame: Fi = (ti , pi)
 ti: Time of i-th frame
 pi: Parameter value of i-th frame (position, color...)

 Problem
 Having values in key-frames how to get reasonable values

for in-between frames ?
 Solution

 Given time t (ti < t < ti+1) and frames (Fi, Fi+1)
 Find parameter value p = I(t, Fi, Fi+1)
 Where I is some frame interpolation funtion

 Nearest neighbor interpolation

 Linear interpolation

 Spline and many more

Parameter interpolation

 Frame Interpolation algorithm
 Store key-frames Fi sorted by the time value ascending
 Given time t, use binary search to find interval (Fi, Fi+1)
 Calculate parameter p = I(t, Fi, Fi+1) with interpolation

 Optimization
 When time changes coherent: t' = t + dt where dt is small
 Use interpolation evaluator instead of binary search

 Interpolation evaluator (similar to iterator)
 Simple additional structure to store current key-frame and

estimate next key-frame
 Store intermediate results of previous interpolation
 etc

Nearest neighbor interpolation

 Method:
p = I(t, Fi, Fi+1) = Fi

 Pros
 Very fast evaluation
 Simple implementation

 Cons
 Sharp discontinuities (non-smooth)
 Non-physical motion
 Visually distracting

Linear Interpolation

 Method (LERP)

 Pros
 Continuous motion
 Fast and easy calculation and implementation

 Cons
 Motion is only linear
 Non-physical
 First time derivation of motion is discontinuous

p=1−spi−s pi1 where s=
t−t i
t i1−t i

Cubic Bezier Interpolation

 N-th Bezier interpolation curve
 Parameter s (0 <= s <= 1) is not time !!!

 Cubic (3-th) Bezier interpolation curve
 Parameter s (0 <= s <= 1) is not time !!!

Bn s=∑
i=0

n

ni 1−sn−i si pi

B3s=1−s3p01−s2 s p11−s s2p2s
3p3

Cubic Bezier Interpolation

 Quadratic Bezier
 Quadratic (s^2) equation
 3 control points

 Cubic Bezier
 Cubic (s^3) equation
 4 control points

 Quartic Bezier
 Quartic (s^4) equation
 5 control points

Bezier Interpolation in key-framing

Bezier Interpolation in key-framing

Current time t

Find curve parameter s for time t
Calculate curve value B(s)

Curve interpolation in key-framing

 Curve parameter s is not time t (s != t)
 1) For given time t find curve parameter s

 No trivial analytic solution for cubic curves
 Solve it numerically using binary search (can be slow)

 Optimization for (1)
 Fix number of iterations, than use linear interpolation for s
 Precompute values into cache, that use neighbor interpol.

 2) With parameter s calculate curve value B(s)
 Evaluate parametric Bezier curve

Orientation in 3D

 Orientation in 3D has no natural representation
 There are more common definitions

 Orientation Matrix (Euler Angles)
 Orientation Axis and Angle
 Orientation Quaternion

 Each type has its pros/cons

Orientation Matrix (Euler Angles)

 Orientation is defined as 3 rotation angles
(Ax, Ay, Az) around X-axis, Y-axis and Z-axis

 Orientation is represented as composition of 3
orthonormal rotation matrices (Rx, Ry, Rz) around
(X, Y, Z) axes → R = Rx*Ry*Rz

 Not unique representation and “Gimbal Lock”
 Complicated decomposition (matrix → angles)

R xax =1 0 0
0 cos a x −sin a x
0 sin a x cos a x R y a y =cosa y 0 sin a y 

0 1 0
−sin a y  0 cosa y R z a z=cos a z −sin az 0

sin a z cosa z 0
0 0 1

Rotation Axis and Angle

 Every rotation in 3D can be defined by its
 Axis u=(x,y,z) (a direction that is left fixed by the rotation)
 Angle a (the amount by which the rotation turns)

 Axis-Angle → Rotation Matrix

X
X

X
Axis

AngleR=PI−Pcos a −Q sin a 

P=u xu x u xu y u xu z
u yu x u yu y u yu z
u zu x u zu y u zu z=u uT I=1 0 0

0 1 0
0 0 1 Q= 0 −u z u y

u z 0 −u x
−u y u x 0 

Quaternions

 Similar to complex numbers
 Defined as: q = w + xi + yj + zk | i2 = j2 = k2 = ijk = -1
 Add: p+q = (w+w) + (x+x')i + (y+y')j + (z+z')k
 Multiply: pq = (w + xi + yj + zk)(w' + x'i + y'j + z'k) =

(ww'-xx'-yy'-zz') + (wx' xw' yz' zy')i + (wy' xz' yw' zf')j + (wz' xy' yx' zw')k

 More info on wikipedia

Quaternions for spatial rotations

 Given unit rotation axis u=(x,y,z) |u|=1 and angle a
 Define quaternion q as: q = cos(a/2) + u sin(a/2)
 Any vector v can be rotated around u by angle a as

v' = qvq-1 (quaternion rotation formula)
 Here v = (a,b,c) represents quaternion 0 + ai + bj + ck
 See proof in wikipedia – by converting into Rodrigues formula

 Rotation composition of p and q is r = pq
 rvr-1 = (pq)v(pq)-1 = pqvq-1p-1 = q(pvp-1)q-1

 Inverse rotation of q in q-1

 v = (q-1q)v(q-1q)-1 = q-1qvqq-1 = q-1(qvq-1)q

25

Quaternions: definition

 In condensed notation the quaternion can be expressed as q = (s,v) where s
is scalar part of q and v is the vector part with axes i, j, k.

 A unit quaternion (|qu| = 1) can be noted as
 The conjugate of quaternion q = (s,v) is equal to
 For a unit quaternion qu we have

 In the context of orientation interpolation, quaternion angle 2θ of qu can
be interpreted as the rotation angle while the vector v is the rotation axis.

),(v−= sq

1-
uu q q =

 sincos)) (), ((qu vθθ=

 Definition: A quaternion is noted q = s + vxi + vyj + vzk
 with s, vx, vy, vz: real numbers and i, j, k: imaginary numbers such that
i2=j2=k2=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j.

Spherical linear interpolation

 Given two unit vectors v
0
 and v

1
 and interpolation

parameter t in (0,1) the slerp in defined as

 Where angle a = cos-1(v
0
v

1
) is the angle between v

0
 and v

1

 Applied to unit quaternions, slerp produces
shortest rotation with constant angular velocity
between orientations q

0
 and q

1

slerpt , v0 ,v1=
sin 1−t a 
sin a

v0
sin ta 
sin a 

v1

30

Quaternions: higher order interpolants
 Spherical linear interpolation between more than two key orientations

produces jerky, sharply changing motion across the keys. Higher order of
continuity is required, e.g., spherical equivalent of the cubic spline.

 A simple example of such construction is Catmull-Rom spline which
passes through the key points and has C1 continuity.

ttt
tt

t

Bezier
 construction

11
22

1

−+

+

ttt

tt
t

Catmull-Rom
construction

Input Quaternions
(points)

Interpolated
Quaternion (point)

03020100

121110

2120

30

qqqq
qqq

qq
q

The de Casteljau algorithm: the point
 b3

0 is obtained from repeated linear
interpolation for t=0.25.

0.25

t

t
t

31

Catmull-Rom spherical interpolation

32

Quaternions rotation matrices
 In animation system each key is usually represented as a single orientation

matrix. This sequence of matrices will be then converted into a sequence of
quaternions. Interpolation between key quaternions is performed and this
produces a sequence of in-between quaternions which are then converted
back to rotation matrices. The matrices are then applied to the object.

 To convert from an orthogonal rotation matrix to a
unit quaternion, we observe that if M = [mij] is the
affine transformation in homogeneous form:

 trace (M) = 4 - 4(X2 + Y2 + Z2) = 4 W2

 and then X, Y, Z can be calculated as:

A unit quaternion q = (W, (X,Y,Z)) is equivalent to the matrix:

Skeleton

Skinning

Skeleton Animation

 Inspired by skeleton system of animals
 Basic work-flow

 Create skeleton – connect bones into hierarchy - rigging
 Create skin – usually a polygonal mesh of animal
 Create vertex-bone weights - skinning
 Animate skeleton using any animation technique - posing

 Skeleton is usually a articulated structure of
bones

 Skinning weights define how much each vertex
“belongs” to a given bone

Rigging skeleton

 Rigging
 Create bone hierarchy – skeleton – in initial pose

 Bone definition
 Name of bone
 Reference to parent bone (none for root bone)
 Set of child bone references (empty for leaves)
 Local transformation (position, orientation, scale)
 Length of bone (direction in local Z-axis)
 Various translation/rotation limits (e.g. knee joint)
 IK type – start / mid / end effector
 Weighting type – (cylinder, capsule, sphere...)

Complete skeleton example

Skinning skeleton

 Matrix palette skinning technique
 Each vertex of mesh (skin) has a small set of

skinning weights W = (w
0
,w

1
,w

2
,w

3
)

 Each weight w
i
 belongs to one (close) bone B

i
 with

a world transformation matrix M
i

 The final vertex transformation is

v ' i=
1

∑
k=0

n

wk
∑
k=0

n

wkMk v i

Skin, Skeleton and Weights

Posing skeleton

 Only bone transformations are animated
 Any animation technique can be used
 World transformation Q of each bone is

composed recursively from parent transform
 Q

i
 = M

i
Q

i-1
 = M

i-1
M

i-2
 … M

0

 where Q
i
 is parent of Q

i+1

 For leaf bones Q
i
 = M

i

Posing skinned skeleton

 Forward and inverse Kinematicsinverse

Forward Kinematics

 Forward (direct) kinematics
 Put objects into transformation hierarchy
 Animate each transformation directly (eg by key-framing)
 Problem: Figure wants to reach a cup on a table by hand, but

how to interpolate transformations to get natural motion ?

Inverse Kinematics

 Overall strategy
 Set goal configuration of end effector
 Calculate interior bone angles

 Analytical solutions: when linkage is simple
enough, directly calculate joint angles in
configuration that satisfies goal

 Numerical solutions: complex linkages. At each
time slice, determine joint movements that take
you in direction of goal position

Inverse Kinematics Scenario

Goal

End Effector

θ1

θ2
θ3L1

L2
L3

Inverse Kinematics - Minimization

Solution = Minimum error

Any algorithm you can think
of, for finding the lowest
points on graphs can be
used for Inverse Kinematics.

Inverse Kinematics - Minimization

 Simple gradient minimization – find better
configuration gradient of angles

IK – Gradient by Measurement

 Pseudo-code: (for 2d, 2 angles)
distance = GetDistance(a,b)
while (Distance > 0.1) {
 da = GetDistance(a+1,b) – GetDistance(a-1,b);
 da = GetDistance(a,b+1) – GetDistance(a,b-1);
 A -= da; B -= db;
 Distance = GetDistance(a,b)

}
 GetDistance(a,b){

 Move joints using angles a and b, than return |target - tip|

}

IK – Gradient by Calculation

 Pseudo-code:
for each joint {
 if 3d: axis = joint rotation axis
 if 2d: axis = (0,0,1)
 toTip = tip – jointCenter
 toTarget = target – tip
 moveDir = cross(toTip, axis)
 gradient = dot(moveDir, toTarget)
 alpha -= gradient

}
 Force based algorithm

Procedural
Animation

 L-Systems
 Fractals

L-Systems

 Lindenmayer system (L-system) is a parallel
rewriting system (formal grammar)
 Most famously used to model the growth processes of plants

 Formal definition: L = (N,T,S,P)
 L – L-system is a 4-tuple
 N – Set of non-terminal letters (big letters)
 T – Set of terminal letters (small letters)
 P – Set of production rules

 Production Rule:
 Non-terminal → (non)terminal string
 Various sub-types exists (original: D0L system)

Example 1: Algae

 Lindenmayer's original L-system
 for modelling the growth of algae.

 L = ({A,B}, {}, A, {(A → AB), (B → A)}
 Grammar results:

 n = 0 : A
 n = 1 : AB
 n = 2 : ABA
 n = 3 : ABAAB
 n = 4 : ABAABABA
 n = 5 : ABAABABAABAAB
 n = 6 : ABAABABAABAABABAABABA
 n = 7 : ABAABABAABAABABAABABAABAABABAABAAB

Example 1: Algae

 n=0: start (axiom/initiator)

 n=1: the initial single A spawned into AB by rule (A → AB), rule (B → A) couldn't be applied

 n=2: former string AB with all rules applied, A spawned into AB again, former B turned into A

 n=3: note all A's producing a copy of themselves in the first place, then a B, which turns ...

 n=4: ... into an A one generation later, starting to spawn/repeat/recurse then

n=0: A
 / \
n=1: A B
 /| \
n=2: A B A
 /| | |\
n=3: A B A A B
 /| | |\ |\ \
n=4: A B A A B A B A

Example: Sierpinski triangle

 L = ({A, B}, {+, -}, A, {(A → B-A-B), (B → A+B+A)}
 Parameters: (angle = 60°)
 A, B: both mean "draw forward",
 +: means "turn left by angle" (turtle graphics)
 -: means "turn right by angle" (turtle graphics)
 The angle changes sign at each iteration so that

the base of the triangular shapes are always in
the bottom (they would be in the top and bottom,
alternatively, otherwise)

Example: Sierpinski triangle

Motion Capture

Motion Capture

 Inspired by Rotoscoping, capturing frames by
cameras

 Marker-based work-flow
 Attach reflex markers on key parts of actors body (knees...)
 Create skeleton and assign marker points
 Capture video-sequence of moving actor (multiple cameras)
 Use image based techniques to find 3d position of markers
 Animate the skeleton by the reconstructed path data

 Pros: faster, simpler, more precise
 Cons: Marker retouching, complex motion = many

markers

the
End

that was enough...

	Snímok 1
	Snímok 2
	Snímok 3
	Snímok 4
	Snímok 5
	Snímok 6
	Snímok 7
	Snímok 8
	Snímok 9
	Snímok 10
	Snímok 11
	Snímok 12
	Snímok 13
	Snímok 14
	Snímok 15
	Snímok 16
	Snímok 17
	Snímok 18
	Snímok 19
	Snímok 20
	Snímok 21
	Snímok 22
	Snímok 23
	Snímok 24
	Snímok 25
	Snímok 26
	Snímok 27
	Snímok 28
	Snímok 29
	Snímok 30
	Snímok 31
	Snímok 32
	Snímok 33
	Snímok 34
	Snímok 35
	Snímok 36
	Snímok 37
	Snímok 38
	Snímok 39
	Snímok 40
	Snímok 41
	Snímok 42
	Snímok 43
	Snímok 44

