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Overview
• So far:

– Clipping

• Today:
– Drawing 1D shapes

• speed
• quality
• consistency

– Filling 2D shapes
• Finding inside pixels
• Ambiguities

• Next:
– RC presentation, computer graphics arts
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Cohen-Sutherland revisited
• Unknown case: How to decide against which plane to clip 

1. Take one endpoint outside window (outcode ≠0000)
2. Set outcode bits correspond to actual clipping planes
3. From left to right (or right to left): intersect line with set-bit plane, 

assign intersection point as new end point
4. Switch corresponding bit to 0
5. Trivial accept / reject ? No: repeat from 3. for next set-bit plane
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Shapes to Draw
• Shapes to draw

– Lines
– Circles, ellipses
– Spline curves
– …

• Rasterization is the process of deciding 
which pixels to fill
– Term comes form the regular raster grid pattern for pixels

• Necessity of pixel displays
– Line is infinitely thin, pixel is not
– Want to draw best approximation to ideal line
– Want to be efficient

CG-1 WS03/04

Drawing a Line
• Assumption

– Pixels are sample points on a 2D-integer-grid
• OpenGL: integer-coordinate bottom left; X11, Foley: in the middle

– Simple raster operations
• setting of binary pixels
• antialiasing later

– End points at pixel coordinates
• simple generalization

– On straight lines: gradient |m| ≤ 1
• separate handling of horizontal and vertical lines
• otherwise exchange of x & y: |1/m| ≤ 1

– Line width is one pixel
• |m| ≤ 1:  1 pixel per column (X-driving axis)
• |m| > 1:  1 pixel per row (Y-driving axis)

⇒ Jaggies, aliasing !

x

y
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Lines: As Function
• Specification

– end points: (x0, y0), (xe, ye)
– functional form: y = mx + B

• Goal
– find pixels whose distance to the line is smallest

• Brute-Force-Algorithm
– it is assumed that +X is the driving axis
for xi = x0 to xe
yi = m * xi + B
setpixel(xi, Round(yi))          

// Round(yi)=Floor(yi+0.5) 

• Comments
– m and yi must be calculated with floating-point precision
– expensive operations per pixel

CG-1 WS03/04

Lines: DDA Algorithm
• DDA: Digital Differential Analyzer

– Origin: solvers  for simple incremental differential equations 
(the Euler method)

• per step in time: x´ = x + dx/dt, y´ = y + dy/dt

• Incremental algorithm
– Per pixel

• xi+1 = xi + 1
• yi+1 = m (xi + 1) + B = yi + m
• setpixel(xi+1, Round(yi+1))

• Remark
– Utilization of line coherence through incremental calculation

• avoids multiplication
– Cumulative error 

• usually negligible for short lines
• double precision is recommended

– Still floating point operations necessary
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Lines: Midpoint Line Algorithm
• Bresenham (´63) 

– Also incremental, but integer arithmetic only
– Uses a decision variable instead of the actual line equation
– Presented for slope between 0 and 1, others can be done by 

symmetry
– Implicit definition of line function: F(x,y):= ax+by+c = 0

F(x,y) = 0

F(x,y) > 0

F(x,y) < 0

CG-1 WS03/04

Bresenham Algorithm: Overview
• Goal: For each x, plot the pixel whose y-value 

is closest to the line
– Given (xi,yi), must choose from either (xi+1,yi+1) or (xi+1,yi)

• Idea: compute a decision variable
– Value that will determine which pixel to draw
– Easy to update from one pixel to the next

• Bresenham algorithm: midpoint algorithm for lines
– Other midpoint algorithms for conic sections (circles, ellipses)
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Midpoint Method
• Consider the midpoint between (xi+1,yi+1) and (xi+1,yi)
• If it’s above the line, we choose (xi+1,yi), otherwise we 

choose (xi+1,yi+1)

yi

yi+1

xi+1xi

Choose (xi+1,yi)

yi

yi+1

xi+1xi

Choose (xi+1,yi+1)

CG-1 WS03/04

Midpoint Decision Variable
• Write the line in implicit form:

– ∆x=x2-x1, ∆y=y2-y1

• The value of F(x,y) tells us where pixels are 
with respect to the line
– F(x,y)=0: the point is on the line
– F(x,y)<0: The point is above the line
– F(x,y)>0: The point is below the line

• The decision variable is the value of
di = 2F(xi+1,yi+0.5)

– The factor of two makes the math easier: eliminates fraction

( ) ( )11, xyyxyxxycbyaxyxF ⋅∆−⋅∆+⋅∆−⋅∆=++=
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What Can We Decide?

• di negative => next point at (xi+1,yi)
• di positive => next point at  (xi+1,yi+1)
• At each point, we compute di and decide

which pixel to draw
• How do we update it? What is di+1?

)12(2)1(2 −∆+∆−+∆= cxxyxyd iii

CG-1 WS03/04

Updating The Decision Variable
• dk+1 is the old value, dk, plus an increment:

• If we chose yi+1=yi+1: 

• If we chose yi+1=yi:

• What is d1 (assuming integer endpoints)?

• Notice that we don’t need c any more

)( 11 kkkk dddd −+= ++

xydd kk ∆−∆+=+ 221

ydd kk ∆+=+ 21

xyd ∆−∆= 21
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Bresenham Algorithm
• For integers, slope between 0 and 1:

– x=x1, y=y1, d=2dy - dx, draw (x, y)
– until x=x2

• x=x+1
• If d>0 then { y=y+1; draw (x, y); d=d+2∆y - 2∆x; }
• If d<0 then { y=y; draw (x, y); d=d+2∆y; }

• Compute the constants (2∆y-2∆x and 2∆y ) once at the 
start
– Inner loop does only adds and comparisons

• Floating point has slightly more difficult initialization, 
but is otherwise the same

• Care must be taken to ensure that it doesn’t matter 
which order the endpoints are specified in (make a 
uniform decision if d==0)

CG-1 WS03/04

Example: (2,2) to (7,6)

∆x=5, ∆y=4
x y d

1
2 3 4 5 6 7 81

2
3
4
5
6
7

x=x1, y=y1, d1=2dy – dx
If d>0 then { y=y+1; draw (x, y); d=d+2∆y - 2∆x; }
If d<0 then { y=y; draw (x, y); d=d+2∆y; }
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Example: (2,2) to (7,6)
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x y d
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3 3 1
4 4 -1
5 4 7
6 5 5
7 6 3
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2 3 4 5 6 7 81

2
3
4
5
6
7

CG-1 WS03/04

Lines: Arbitrary Directions
• 8 different cases

– driving (active) axis: ±X or ±Y
– Increment/decrement of y or x, respectively

+Y,x+++Y,x--

-Y,x-- -Y,x++

+X,y--

+X,y++-X,y++

-X,y--
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Lines: Some Remarks 
• Reversed end point order –

consistency of pixel choices
– m > 0: (d ≤ 0)?
– m < 0: (d ≥ 0)?

• Dashed lines
– glLineStipple(Factor, 16-BitSample)
– if (BitSample[(n++/Factor)%16]) then setpixel(...) 
– consistent continuation of dashing for line strips and loops

• Weaker intensity of diagonal lines
– Same number of pixel on a larger distance (up to 41%)

• Subpixel-precision
– Clipping, subpixel-coordinates
– Correct initialization of the decision 

variable

GL_LINE_STIRPGL_LINES

CG-1 WS03/04

Thick Lines
• Pixel replication

– problems with even-numbered widths,
– varying the intensity of a line as a function of slope

• The moving pen

– for some pen footprints the thickness of a line might change as a 
function of its slope

• Filling areas between boundaries
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CG-1 WS03/04

Line Joints
• End point handling

• Avoid multiple drawings
– Local bitmap with already set pixels

CG-1 WS03/04

Drawing Circles
• Square roots and multiplication and trigonometry.  

Yuck.
• Symmetry.  Yay.
• Similar to line scan conversion.  Fine.



11

CG-1 WS03/04

Line Joints
• End point handling

• Avoid multiple drawings
– Local bitmap with already set pixels

CG-1 WS03/04

Drawing Circles
• Square roots and multiplication and trigonometry.  

Yuck.
• Symmetry.  Yay.
• Similar to line scan conversion.  Fine.



12

CG-1 WS03/04

Midpoint Circle Algorithm
• Look at top right eighth of circle
• d = F(x,y) = x2 + y2 - R2

• d = 0 on circle, < 0 under circle, > 0 over circle

• When have value at (x,y), choose next pixel by 
calculating d=F(x+1, y-.5) 

• Initial d derivation, assuming start point is (0,R):
F(1, R-.5) = 1 + (R2 - R + .25) - R2

= 1.25 - R 

• Eliminate float:
Define h = d - .25 and substitute h + .25 for d
Initialize h = 1 – R and check for h<-.25 instead of d<0
Since h is always an integer, can just check for h<0

CG-1 WS03/04

Midpoint Circle Algorithm
• How to get next value of d incrementally:

– If didn’t go down one line (same y, next x)

d = F(x+2, y-.5) = (x+2)2 + (y-.5)2 - R2

= x2+4x+4 + (y-.5)2 - R2

= x2+2x+1 + (y-.5)2 - R2 + 2x + 3
= (x+1)2 + (y-.5)2 - R2 + (2x + 3)
= F(x+1, y-.5) + (2x + 3)

So new d is previous d plus (2x + 3)

– If did go down one line, similar derivation shows 

new d is previous d plus (2x - 2y + 5)

Roman
Highlight

Roman
Highlight
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Bresenham: Circle
• Eight different cases 

here +X, y—

Initialization: x=0, y=R
F(x,y)=x2+y2-R2

d=F(x+1, y-1/2)
d < 0: 

d=F(x+2,y-1/2)
d > 0:

d=F(x+2,y-3/2)
y=y-1

x=x+1

• Eight-way symmetry: only one 45O segment is needed 
to determine all pixels in a full circle

F < 0

F > 0

F = 0

(x,y)

(x,-y)

(y,x)

(-x,y)

(y,-x)

(-x,-y)

(-y,x)

(-y,-x)

CG-1 WS03/04

Second Order Differences
• Not only look at difference between previous d and 

current d, also look at difference of the differences
– Take into account what happened at the last 2 previous pixels

• Use change in d based on previous choice at each 
iteration

• Accumulate changes in d with second order 
differences

• Simple change to algorithm, produces slightly better 
results
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Second Order Differences
• If aren’t going down one line:

– If didn’t last time, original change in d was 2x+3
– New change is 2(x+1) + 3 = original + 2
– Second order difference = 2
– If did, original change in d was 2x-2y+5
– New change is 2(x+1)-2y+5
– Second order difference is again 2

• If are going down one line:
– If didn’t last time, original change in d was 2x+3
– New change is 2(x+1) + 3 = original + 2
– Second order difference = 2 (independent of y)
– If did, original change in d was 2x-2y+5
– New change is 2(x+1)-2(y-1)+5
– Second order difference is now 4

CG-1 WS03/04

Bresenham: More General
• Midpoint method works well for ellipses and other 

implicitly definable curves
• Parabolas, hyperbolas, ...
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CG-1 WS03/04

Anti-Aliasing
• Supersampling

– Calculates solution in virtual screen space 
• higher resolution

– Downsampling to real screen space
• Grey values for partially covered pixels

– Leaves rendering methodology unaltered

CG-1 WS03/04

Polygons
• Types

– triangles
– trapezoids
– rectangles
– convex polygons
– concave polygons
– arbitrary polygons

• holes
• non-coherent

• Two approaches
– polygon tessellation into triangles

• edge-flags for internal edges
– direct scan-conversion
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Triangle Filling

Raster3_box(vertex v[3])
{

int x, y;
bbox b;
bound3(v, &b);
for (y= b.ymin; y < b.ymax; y++)

for (x= b.xmin; x < b.xmax; x++)
if (inside(v, x, y))
fragment(x,y);

}

•• Possible approachesPossible approaches
– first bounding-box, then triangle
– First triangle, then bounding-box

•• BruteBrute--Force algorithmForce algorithm

CG-1 WS03/04

Filling Polygons
• Sampling polygons:

– When is a pixel inside a polygon? 
– Given a pixel, which polygon does it lie in? Point location

• Polygon representation:
– Polygon defined by a list of edges 

• each edge is a pair of vertices
– All vertices are inside the view volume and map to valid pixels 

(clipping is behind us now)
– Let’s assume integer window coordinates 

• to simplify things for now
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Inside-Outside Tests
• What is the interior of a polygon?

– Jordan curve
• A planar curve homeomorphic to a circle 

is called Jordan curve. A Jordan curve 
separates a plane in two connected 
components, one of which is bounded.

– Odd-even rule (odd parity rule)
• counting the number of edge crossings 

with a ray starting at the queried point P
• inside, if the number of crossings is odd

– Non-zero winding number rule
• signed intersections with a ray
• inside, if the number is

not equal to zero

0

1
2

3

4

-1

+1

-1

1 0
1

1
1

1

1 1

1
1

2
1

CG-1 WS03/04

What is Inside ?
• Assume sampling with 

an array of spikes
• If spike is inside, pixel 

is inside
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What is Inside ?
• Easy for simple polygons –

no self intersections or holes
– Required by OpenGL; other cases undefined
– Additionally, OpenGL also requires convex polygons

• For general polygons, three rules are possible:
– Non-exterior rule: A point is inside if every ray to infinity intersects 

the polygon
– Non-zero winding number rule: Draw a ray to infinity that does 

not hit a vertex. If the number of edges crossing in one direction is 
not equal to the number crossing the other way, the point is inside

– Parity rule: Draw a ray to infinity and count the number or edges 
that cross it. If even, the point is outside, if odd, it’s inside

CG-1 WS03/04

Inside/Outside Rules

Polygon

ParityNon-zero Winding No.

Non-exterior



18

CG-1 WS03/04

Inside-Outside Tests
• What is the interior of a polygon?

– Jordan curve
• A planar curve homeomorphic to a circle 

is called Jordan curve. A Jordan curve 
separates a plane in two connected 
components, one of which is bounded.

– Odd-even rule (odd parity rule)
• counting the number of edge crossings 

with a ray starting at the queried point P
• inside, if the number of crossings is odd

– Non-zero winding number rule
• signed intersections with a ray
• inside, if the number is

not equal to zero
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1 0
1

1
1

1

1 1
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CG-1 WS03/04

What is Inside ?
• Assume sampling with 

an array of spikes
• If spike is inside, pixel 

is inside
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What is Inside ?
• Assume sampling with 

an array of spikes
• If spike is inside, pixel 

is inside

CG-1 WS03/04

Ambiguous Cases

• Ambiguous case: What if a pixel lies on an edge?
– Problem because if two polygons share a common edge, 

we don’t want pixels on the edge to belong to both
– Ambiguity would lead to different results 

if the drawing order was different

• Rule: if (x+ε , y+ε ) is in, (x,y) is in
• What if a pixel is on a vertex? Does our rule still work?
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What is Inside ?
• Assume sampling with 

an array of spikes
• If spike is inside, pixel 

is inside

CG-1 WS03/04

Ambiguous Cases

• Ambiguous case: What if a pixel lies on an edge?
– Problem because if two polygons share a common edge, 

we don’t want pixels on the edge to belong to both
– Ambiguity would lead to different results 

if the drawing order was different

• Rule: if (x+ε , y+ε ) is in, (x,y) is in
• What if a pixel is on a vertex? Does our rule still work?
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Ambiguous Case I
• Rule:

– On edge? 
If (x+ ε, y+ε) is in, pixel is in

– Which pixels are colored?
• OpenGL origin convention !

CG-1 WS03/04

Ambiguous Case I
• Rule:

– Keep left and bottom edges
– Assuming y increases in the 

up direction
– If rectangles meet at an 

edge, how often is the edge 
pixel drawn?



20

CG-1 WS03/04

Ambiguous Case I
• Rule:

– On edge? 
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– Which pixels are colored?
• OpenGL origin convention !
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Ambiguous Case I
• Rule:

– Keep left and bottom edges
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up direction
– If rectangles meet at an 

edge, how often is the edge 
pixel drawn?
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Ambiguous Case II
• Rule:

– On edge? 
If (x+ ε, y+ε) is in, pixel is in

– What happens for diagonal edges ?

CG-1 WS03/04

Ambiguous Case II

?
?

?
?

or
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Ambiguous Case II
• Rule:

– On edge? 
If (x+ ε, y+ε) is in, pixel is in

– What happens for diagonal edges ?

CG-1 WS03/04

Ambiguous Case II

?
?

?
?

or
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Really Ambiguous
• We will accept 

ambiguity in such 
cases
– The center pixel may end 

up colored by one of two 
polygons in this case

– Which two?

• Might be solvable 
using (x+ε , y+ε 2) (?)
– Arbitrarily small, 

irrational slope
– Rule stays the same

1

2

3
4

5

6

CG-1 WS03/04

Scanline Conversion
• Fill pixel area inside polygon edges
• Exploiting Coherence when filling a polygon

– Several contiguous pixels along a row 
tend to be in the polygon - a span of pixels

• Scanline coherence
– Consider whole spans, not individual pixels
– Pixel number and position don’t vary much 

from one span to the next
• Edge coherence

– Incrementally update span endpoints
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CG-1 WS03/04

Scanline Conversion
• Fill pixel area inside polygon edges
• Exploiting Coherence when filling a polygon

– Several contiguous pixels along a row 
tend to be in the polygon - a span of pixels

• Scanline coherence
– Consider whole spans, not individual pixels
– Pixel number and position don’t vary much 

from one span to the next
• Edge coherence

– Incrementally update span endpoints
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Sweep Fill Algorithms
• Algorithmic issues:

– Reduce to filling many spans
– Which edges define the span of pixels to fill?
– How do you update these edges when moving from span to span?
– What happens when you cross a vertex?

CG-1 WS03/04

Spans
• Process - fill the bottom 

horizontal span of pixels; move 
up and keep filling 

• Have xmin, xmax for each span
• Define:

– floor(x): largest integer < x
– ceiling(x): smallest integer >=x

• Fill from ceiling(xmin) up to 
floor(xmax)

• Consistent with convention
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Algorithm
• For each row in the polygon:

– Throw away irrelevant edges
– Obtain newly relevant edges
– Fill span
– Update current edges

• Issues:
– How do we update existing edges?
– When is an edge relevant/irrelevant?

• All can be resolved by referring to our convention about what 
polygon the pixel belongs to

CG-1 WS03/04

Updating Edges
• Each edge is a line of the form:

• Next row is:

• So, each current edge can have it’s x position updated 
by adding a constant stored with the edge

• Other values may also be updated, such as depth or 
color information

cmyxcmxy ′−′=+= or         

mxcmyx ii ′+=′−′+=+ )1(1




