Computer Graphics

- Rasterization -

CG-1 WS03/04

Overview

» Sofar:
— Clipping
* Today:
— Drawing 1D shapes
* speed
e quality
e consistency
— Filling 2D shapes
« Finding inside pixels
« Ambiguities
* Next:
— RC presentation, computer graphics arts

CG-1 WS03/04

Cohen-Sutherland revisited

« Unknown case: How to decide against which plane to clip
1. Take one endpoint outside window (outcode * 0000)
2. Set outcode bits correspond to actual clipping planes
3. From left to right (or right to left): intersect line with set-bit plane,
assign intersection point as new end point
4. Switch corresponding bit to 0
5. Trivial accept / reject ? No: repeat from 3. for next set-bit plane

B
1001 1000 /010

0001 0000 0010

0101 0100 A 0110

CG-1 WS03/04

You are here ...

CG-1 WS03/04

Shapes to Draw

¢ Shapes to draw
— Lines
— Circles, ellipses
— Spline curves

» Rasterization is the process of deciding
which pixels to fill
— Term comes form the regular raster grid pattern for pixels
* Necessity of pixel displays
— Line is infinitely thin, pixel is not
— Want to draw best approximation to ideal line
— Want to be efficient

CG-1 WS03/04

Drawing a Line

e Assumption
— Pixels are sample points on a 2D-integer-grid
* OpenGL: integer-coordinate bottom left; X11, Foley: in the middle
Simple raster operations
 setting of binary pixels
 antialiasing later
End points at pixel coordinates
« simple generalization
On straight lines: gradient [m| £ 1
» separate handling of horizontal and vertical lines
» otherwise exchange of x & y: [1/m| £ 1
Line width is one pixel
e |m| £ 1: 1 pixel per column (X-driving axis)
e |m|>1: 1 pixel per row (Y-driving axis)
b Jaggies, aliasing !

CG-1 WS03/04

Lines: As Function

Specification
— end points: (X, Yo), (Xer Vo)
— functional form:y = nx + B
Goal
— find pixels whose distance to the line is smallest
Brute-Force-Algorithm
— itis assumed that +X is the driving axis
for x; = x5 to Xg
yi =m* x; + B
set pi xel (x;, Round(y;))
/1 Round(y;) =Fl oor (y;+0. 5)
Comments
— mandy; must be calculated with floating-point precision
— expensive operations per pixel

CG-1 WS03/04

Lines: DDA Algorithm

» DDA: Digital Differential Analyzer
— Origin: solvers for simple incremental differential equations
(the Euler method)

e perstepintime:x” = x + dx/dt, y° =y + dy/dt

* Incremental algorithm
— Per pixel
* Xy =X+ 1
* VYiag =M(Xx +1) +B=y +m
* setpi xel (X;,;, Round(y;.,))

* Remark
— Utilization of line coherence through incremental calculation
« avoids multiplication
— Cumulative error
« usually negligible for short lines
¢ double precision is recommended
— Still floating point operations necessary

CG-1 WS03/04

Lines: Midpoint Line Algorithm

* Bresenham ("63)
— Also incremental, but integer arithmetic only
— Uses a decision variable instead of the actual line equation

— Presented for slope between 0 and 1, others can be done by
symmetry

— Implicit definition of line function: F(x,y):= ax+by+c =0

F(x,y)<0

CG-1 WS03/04

Bresenham Algorithm: Overview

» Goal: For each x, plot the pixel whose y-value

is closest to the line

— Given (x;,Y;), must choose from either (x+1,y.+1) or (x+1,y)
» |dea: compute adecision variable

— Value that will determine which pixel to draw

— Easy to update from one pixel to the next

* Bresenham algorithm: midpoint algorithm for lines
— Other midpoint algorithms for conic sections (circles, ellipses)

CG-1 WS03/04

Midpoint Method

« Consider the midpoint between (x;+1,y;+1) and (x;+1,y;)

« Ifit’'s above the line, we choose (x;+1,y;), otherwise we
choose (x;+1y;+1)

yi+1 [yi+1 ,.(/
._,4 <

y ,// yi// °

— X |x+1 - X |x+1

Choose (x;+1,y;) Choose (x;+1,Y:,1)

CG-1 WS03/04

Midpoint Decision Variabl
* Write the line in implicit form:
— Dx=x2-x1, Dy=y2-y1

F(x y)=ax+by+c=Dy»x- Dxxy+(Dxxy, - Dy xx,)

* Thevalue of F(x,y) tells us where pixels are
with respect to the line
— F(x,y)=0: the point is on the line
— F(x,y)<0: The point is above the line
— F(x,y)>0: The point is below the line
» The decision variable is the value of
d; = 2F(x;+1,y,+0.5)

— The factor of two makes the math easier: eliminates fraction

CG-1 WS03/04

What Can We Decide?

d, =2Dy(x +1)- 2Dxy, + Dx(2c- 1)

* d, negative => next point at (x;+1,y;)

» d, positive => next point at (x;+1,y;+1)

» At each point, we compute d; and decide
which pixel to draw

 How do we update it? What is d;,,?

CG-1 WS03/04

Ing The Decision Variabl
* dy,, is the old value, d,, plus an increment:
Oy = +(diiy - dy)
* If we chosey;,;=y;+1:
d,, = d, +2Dy- 2Dx
* If we chosey,,;=y;
d|<+1 = dk +2Dy
* What is d, (assuming integer endpoints)?
d, =2Dy- Dx

* Notice that we don’t need c any more

CG-1 WS03/04

Bresenham Algorithm

» Forintegers, slope between 0 and 1:
— X=Xy, Y=Yy, d=2dy - dx, draw (X, y)
— until x=x,
o X=x+1
« If d>0 then { y=y+1; draw (X, y); d=d+2Dy - 2Dx; }
e Ifd<0 then { y=y; draw (X, y); d=d+2Dy; }
¢ Compute the constants (2Dy-2Dx and 2Dy) once at the
start

— Inner loop does only adds and comparisons

* Floating point has slightly more difficult initialization,
but is otherwise the same

e Care must be taken to ensure that it doesn’t matter

which order the endpoints are specified in (make a
uniform decision if d==0)

CG-1 WS03/04

Example: (2.2 7

x=x1, y=y1, d1=2dy — dx
If d>0then { y=y+1; draw (X, y); d=d+2Dy - 2Dx; }
If d<0then { y=y; draw (X, y); d=d+2Dy; }

o Dx=5, Dy=4
X \Vi d

7

R N W b O OO N
~ |o]olo]olo]o]o
s [o|o|oYo|o|o]o
o [o|o|o|No|o]o
o |o|lo|o]o|[&o]o
~ [ololololo|®]|o

N |o|g|o|oofo]|o
woo\Qoooo
o |o|lo|ololo]|o

CG-1 WS03/04

M A i« M~ M

hi

A >Nm< 0o
P _no..
© 0
- XN < IO O~
N
N’
.m olololololo|o]|w
A~
~ o|e|o]o|o|o|o|n~
n/_, oo/AooooG
~ ooo//oooo5
) oooo//ooo4
O olololo|&]o|o]|m
- olo|olo|oe|o]|w
© olololo|o|lo|o]|« g
> 2

=
E N O IO < M N 3
(@]

Lines: Arbitrary Directions
+ 8different cases

— driving (active) axis: X or £Y
— Increment/decrement of y or x, respectively

CG-1 WS03/04

Lines: Some Remarks

Reversed end point order —
consistency of pixel choices

- m>0:(d £0)? — — P — — —o
- m<Q0:(d?3 0)? GL_LINES |“ GL_LINE_STIRP |J
« Dashed lines L l

— glLineStipple(Factor, 16-BitSample)
— if (BitSample[(n++/Factor)%16]) then setpixel(...)
— consistent continuation of dashing for line strips and loops

* Weaker intensity of diagonal lines
— Same number of pixel on a larger distance (up to 41%)

Subpixel-precision

— Clipping, subpixel-coordinates
— Correct initialization of the decision /"/
variable

—

CG-1 WS03/04

Thick Lines

» Pixel replication

— problems with even-numbered widths,
— varying the intensity of a line as a function of slope

* The rgoying pen

— for some pen footprints the thickness of a line might change as a
function of its slope

* Filling areas between boundaries

CG-1 WS03/04

Line Joints

* End point handling

* Avoid multiple drawings
— Local bitmap with already set pixels

CG-1 WS03/04

Drawing Circles

» Square roots and multiplication and trigonometry.
Yuck.

e Symmetry. Yay.
+ Similar to line scan conversion. Fine.

CG-1 WS03/04

Midpoint Circle Algorithm

* Look at top right eighth of circle
+ d=F(xy)=x2+y?-R?
e d=0o0ncircle, <0under circle, >0 over circle

 When have value at (x,y), choose next pixel by

calculating d=F(x+1, y-.5)
* Initial d derivation, assuming start point is (0O,R):

F(1, R-5) =1+ (R2-R +.25) - R2
=125-R

e Eliminate float:

Define h = d - .25 and substitute h + .25 for d

Initialize h =1 — R and check for h<-.25 instead of d<0

Since h is always an integer, can just check for h<0

CG-1 WS03/04

Roman
Highlight

Roman
Highlight

Midpoint Circle Algorithm

* How to get next value of d incrementally:
— If didn’t go down one line (same y, next x)

d = F(x+2, y-.5) = (x+2)? + (y-.5)? - R?
= X2+4x+4 + (y-.5)% - R?

X24+2x+1 + (y-.5)2 - R2+ 2x + 3

(cHIP + (-5 - R+ (2x+3)

= F(x+1, y-.5) + (2x + 3)

So new d is previous d plus (2x + 3)

— If did go down one line, similar derivation shows

new d is previous d plus (2x - 2y + 5)

CG-1 WS03/04

Bresenham: Circle

» Eight different cases
here +X,y—

Initialization: x=0, y=R
F(x,y)=x?+y?-R?
d=F(x+1, y-1/2)
d<o:

d=F(x+2,y-1/2)
d>0:
d=F(x+2,y-3/2)
y=y-1
X=x+1

(-y,X)

(%)

(_y v-X)

\‘ ./ %)

(-X,-y)

(X,-y)

« Eight-way symmetry: only one 45° segment is needed
to determine all pixels in a full circle

CG-1 WS03/04

Bresenham: More General

* Midpoint method works well for ellipses and other
implicitly definable curves
« Parabolas, hyperbolas, ...

CG-1 WS03/04

Anti-Aliasing

e Supersampling
— Calculates solution in virtual screen space
* higher resolution
— Downsampling to real screen space
< Grey values for partially covered pixels
— Leaves rendering methodology unaltered

CG-1 WS03/04

Polygons

. Types
— triangles i \ w
— trapezoids
— rectangles

— convex polygons
— concave polygons

— arbitrary polygons
* holes
* non-coherent
 Two approaches
\ j
\

— polygon tessellation into triangles
« edge-flags for internal edges
— direct scan-conversion

CG-1 WS03/04

Triangle Filling

* Possible approaches ++ +++++
— first bounding-box, then triangle _|_ .¢___¢.__¢__¢___$_ _|_
— First triangle, then bounding-box '
* Brute-Force algorithm i * i i
Rast er 3_box(vertex v[3]) _|_ I 4;_ _|_
{
int x, vy; +++++++

bbox b;
bound3(v, &b);
for (y= b.ymin; y < b.ymax; y++)
for (x= b.xmn; x < b.xmax; x++)
if (inside(v, x, Vy))
fragment (x,y);
}

CG-1 WS03/04

Eilling Polygons

* Sampling polygons:
— When is a pixel inside a polygon?
— Given a pixel, which polygon does it lie in? Point location
* Polygon representation:
— Polygon defined by a list of edges
« each edge is a pair of vertices
— All vertices are inside the view volume and map to valid pixels
(clipping is behind us now)
— Let's assume integer window coordinates
« to simplify things for now

CG-1 WS03/04

Inside-Outside Tests

* What is the interior of a polygon?
— Jordan curve

« A planar curve homeomorphic to a circle 4 0
is called Jordan curve. A Jordancurve ~ / VT T\ T T
separates a plane in two connected
components, one of which is bounded.
— Odd-even rule (odd parity rule)

< counting the number of edge crossings
with a ray starting at the queried point P

« inside, if the number of crossings is odd
— Non-zero winding number rule
* signed intersections with a ray

* inside, if the number is "éw

not equal to zero

CG-1 WS03/04

Polygon Norrexterior

S

Non-zero Winding No. Parity

o D

CG-1 WS03/04

What is Inside ?

* Assume sampling with
an array of spikes

» If spike is inside, pixel
is inside

O[O0|O|O|O|O|O
Olfo|O0|]O|O|0O]lO
Olfo|O0|]O|O|0O]lO
Olfo|O0|]O|O|0O]lO
Olfo|O0|]O|O|0O]lO
Olfo|O0|]O|O|0O]lO
OlfO0]O|O0]|O |0}l O
O[O0|O|O|O|O|O

CG-1 WS03/04

What is Inside ?

e Assume sampling with
an array of spikes

* If spikeis inside, pixel
is inside

O[O0|O|O|O|O|O
Olle|® ®&|® @ O
Olle|® ®&|® @ O
Olle|® ®&|® @ O
Olle|® ®&|® @ O
Olle|® ®&|® @ O
Ojje| e & | ® 0| O
O[O0|O|O|O|O|O

CG-1 WS03/04

Ambiguous Cases

« Ambiguous case: What if a pixel lies on an edge?
— Problem because if two polygons share a common edge,
we don’t want pixels on the edge to belong to both
— Ambiguity would lead to different results
if the drawing order was different

* Rule: if (x+e, y+e) isin, (X,y) isin
* What if a pixel is on avertex? Does our rule still work?

CG-1 WS03/04

Ambiguous Case

* Rule:
— On edge?
If (x+e y+e) is in, pixel is in
— Which pixels are colored?
* OpenGL origin convention !

q

q

q

q

O|O|O
O|O|O
O|O|O
O|O|O

O[O0|O|O|O|O|O

O[O0|O|O|O|O|O

CG-1 WS03/04

Ambiguous Case |

* Rule:
— Keep left and bottom edges

— Assuming y increases in the o|lo|O0|O|O|O|O]|O
up direction o ? o—oelale | O

— If rectangles meet at an
edge, how often is the edge o + e|l® o o ¢ O
pixel drawn? o + ol oelele|d]|o
ol¢|e|e|e|e|d|o
o | e+eototetetd |0
O|lO|O0O|O0O|O|O[O]|O

CG-1 WS03/04

Ambiguous Case ||

* Rule:
— On edge?

If (x+e y+e) is in, pixel is in
— What happens for diagonal edges ?

@)

@)

@)

@)

@)

@)

@)

O[O0|O|O|O|O|O

ooo/o
oo%oo

oo/ooooo

olddololofo]|o

ololo[o™d|ol|o
olololololo]o

CG-1 WS03/04

Ambiquous Case |l

O[O0|O|O

...‘PO

©)

©)

O[O0]|O|O|O|O|O]|O

©)

olololo|o™M]|o]|o
ololo]ololololo

O[O0|O|O

...‘PO

©)

©)
©)

O[O0]|O|O|O|O|O]|O

©)

olololo|o™M]|o]|o
ololo]ololololo

CG-1 WS03/04

Really Ambiguous

* We will accept
ambiguity in such

cases \\
. ONO|[O|O[O]|O @)
— The center pixel may end N
up colored by one of two ©) b\o 1o O[O
poI;_/gons in this case (6 O o olcoo
— Which two? —
. o
« Might be solvable Q %ﬁ ©]©°
using (x+e,y+e?) (?) | ©10 |0 JO| O[S40 oy
— Arbitrarily small, '0) 5) oflololo O\&
irrational slope 4
— Rule stays the same ©l° ¢ o I °lej°

/)’

CG-1 WS03/04

Scanline Conversion

» Fill pixel area inside polygon edges

* Exploiting Coherence when filling a polygon
— Several contiguous pixels along a row
tend to be in the polygon - a span of pixels
e Scanline coherence
— Consider whole spans, not individual pixels
— Pixel number and position don’t vary much
from one span to the next
» Edge coherence

— Incrementally update span endpoints

CG-1 WS03/04

Spans

e Process - fill the bottom
horizontal span of pixels; move ©|° O, ;O o B R A
up and keep filling O|0 O/O }\\O O|0O|O0
e Have Xpin, Xmax fOr €ach span olo ol o .\\Q olo
» Define: N
— floor(x): largest integer < x © (A hdhdRd i)3 ©
— ceiling(x): smallest integer >=x O//O o|lo oo O/IO e}
* Fill from ceiling(Xy,i,) up to (oloelole .A) olo
floor(Ximax) \ /
+ Consistent with convention O o o0 % 0|0|0O
y
olo\e|e|efo|o|o]o0
o ®//0lo|o|ofo
olo|o|¥|o|o|o|o]o

CG-1 WS03/04

Algorithm

¢ For each row in the polygon:
— Throw away irrelevant edges
— Obtain newly relevant edges
— Fill span
— Update current edges
* |ssues:
— How do we update existing edges?
— When is an edge relevant/irrelevant?

* All can be resolved by referring to our convention about what
polygon the pixel belongs to

CG-1 WS03/04

