Lecture 4: Ontologies and Description Logics 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

October 21, 2014

Ontology is a study of the nature of being, existence, or reality, as well as of basic categories of being and their relations.

Note: It is a philosophical study of entities that exist.

Ontology is a study of the nature of being, existence, or reality, as well as of basic categories of being and their relations.

Note: It is a philosophical study of entities that exist.

Definition (Computer Science)

Ontology is a formal conceptualization of a domain.

Ontology is a study of the nature of being, existence, or reality, as well as of basic categories of being and their relations.

Note: It is a philosophical study of entities that exist.

Definition (Computer Science)

Ontology is a formal conceptualization of a domain.

Note: It is a description of entities and their relations in a given domain, recorded in a formal language.

Ontology is a study of the nature of being, existence, or reality, as well as of basic categories of being and their relations.

Note: It is a philosophical study of entities that exist.

Definition (Computer Science)

Ontology is a formal conceptualization of a domain.

Note: It is a description of entities and their relations in a given domain, recorded in a formal language.

Note: In knowledge representation and computational logic we consider a formal language with logical semantics.

Example Ontologies

э

- Q: Is my ontology consistent?
 - Are all classes meaningful?
- Is a subsumption implied by the ontology?
 - Is PassengerCar a subclass of AerialVehicle?
 - Are CommonFlu and Influenza equivalent classes?
- Is a given object an instance of a given class?
 - Is slovakia in the class EUCountry?

Least common subsumers:

• What is the smallest superclass of both PassangerCar and Hovercraft?

Query answering:

• Return all students who attend a course in the Master programme and their advisor is an external professor from a university located in a neighbouring country.

Definition (Vocabulary)

A DL vocabulary consists of three countable mutually disjoint sets:

- set of individuals $N_{I} = \{a, b, ...\}$;
- **2** set of atomic concepts $N_{C} = \{A, B, ...\}$;
- **3** set of roles $N_{R} = \{R, S, ...\}$.

Definition (Vocabulary)

A DL vocabulary consists of three countable mutually disjoint sets:

- set of individuals $N_{I} = \{a, b, ...\}$;
- Set of atomic concepts $N_{C} = \{A, B, ...\}$;

3) set of roles
$$N_{\mathsf{R}} = \{R, S, \dots\}$$
 .

Note: from now on, we always assume that some suitable vocabulary is given, containing all the symbols we use in our concepts and knowledge bases.

Definition (Complex concepts)

Concepts are recursively constructed as a smallest set of expressions of the forms:

$$C, D ::= A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists R.C \mid \forall R.C$$

where $A \in N_{C}$, $R \in N_{R}$, and C, D are concepts.

Definition (Complex concepts)

Concepts are recursively constructed as a smallest set of expressions of the forms:

$$C, D ::= A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists R.C \mid \forall R.C$$

where $A \in N_{C}$, $R \in N_{R}$, and C, D are concepts.

Note: Non-atomic concepts are often called complex concepts.

Definition (Complex concepts)

Concepts are recursively constructed as a smallest set of expressions of the forms:

$$C, D ::= A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists R.C \mid \forall R.C$$

where $A \in N_{C}$, $R \in N_{R}$, and C, D are concepts.

Note: Non-atomic concepts are often called complex concepts.

Note: Concept constructors of ALC: complement (¬), intersection (\square), union (\square), existential restriction (\exists), and value restriction (\forall).

Note: Other DL different from \mathcal{ALC} use different sets of constructors.

ALC DL: Syntax (cont.)

Definition (TBox)

A TBox \mathcal{T} is a finite set of GCI axioms ϕ of the form:

$$\phi ::= C \sqsubseteq D$$

where C, D are any concepts.

★ ∃ →

э

ALC DL: Syntax (cont.)

Definition (TBox)

A TBox \mathcal{T} is a finite set of GCI axioms ϕ of the form:

$$\phi ::= C \sqsubseteq D$$

where C, D are any concepts.

Definition (ABox)

A ABox $\mathcal T$ is a finite set of assertion axioms ϕ of the form:

$$\phi ::= a : C \mid a, b : R$$

where $a, b \in N_{I}$, $R \in N_{R}$, and C is any concept.

ALC DL: Syntax (cont.)

Definition (TBox)

A TBox \mathcal{T} is a finite set of GCI axioms ϕ of the form:

$$\phi ::= C \sqsubseteq D$$

where C, D are any concepts.

Definition (ABox)

A ABox ${\mathcal T}$ is a finite set of assertion axioms ϕ of the form:

$$\phi ::= a : C \mid a, b : R$$

where $a, b \in N_{I}$, $R \in N_{R}$, and C is any concept.

Note: GCI stands for General Concept Inclusions, they are general subsumption axioms. The two types of assertions are concept assertion and role assertion, respectively.

Definition (DL Knowledge Base)

A DL knowledge base (KB) $\mathcal{K}=(\mathcal{T},\mathcal{A})$ is a pair consisting of a TBox and an ABox.

Note: TBox contains the intensional part of the KB: the descriptions of all concepts and their relations. ABox contains the extensional part: empirical evidence, facts.

Note: Ontologies can be represented by DL KB. But ontologies can also be represented in other languages (including FOL).

Example (cont.)

 \mathcal{T} :

Carnivore ⊔ Herbivore ⊑ Animal Carnivore ⊑ ∀eats.(Animal ⊔ AnimalPart) Herbivore ⊑ ∀eats.¬(Animal ⊔ ∃partOf.Animal) Cow ⊑ Hebivore Brain ⊑ ∃partOf.Aminal CowBrain ⊑ Brain ⊓ ∃partOf.Cow Plant ⊑ ¬Animal Grass ⊑ Plant

 \mathcal{A} :

daisy : Cow g3457 : Grass daisy,g3457 : eats

ALC DL: Semantics

Definition (Interpretation)

An interpretation of a given a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ which contains:

• a domain $\Delta^{\mathcal{I}} \neq \emptyset$;

• an interpretation function
$$\cdot^{\mathcal{I}}$$
 s.t.:
 $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for all $a \in N_{\mathsf{I}}$;
 $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for all $A \in N_{\mathsf{C}}$;
 $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for all $R \in N_{\mathsf{R}}$;

and for any C, D and R, the interpretation of complex concepts is recursively defined as follows:
¬C^I = Δ^I \ C^I;
C □ D^I = C^I ∩ D^I
C □ D^I = C^I ∪ D^I

$$\exists R. C^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}} : \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}} \} \\ \forall R. C^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \mid \forall y \in \Delta^{\mathcal{I}} : \langle x, y \rangle \in R^{\mathcal{I}} \implies y \in C^{\mathcal{I}} \}$$

Definition (Satisfaction |=)

Given an axiom ϕ , an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfies ϕ depending on its type:

$$C \sqsubseteq D: \mathcal{I} \models C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$
$$a: C: \mathcal{I} \models a: C \text{ iff } a^{\mathcal{I}} \in C^{\mathcal{I}}$$
$$a, b: R: \mathcal{I} \models a, b: R \text{ iff } \langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$$

Definition (Satisfaction |-)

Given an axiom ϕ , an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfies ϕ depending on its type:

$$C \sqsubseteq D: \mathcal{I} \models C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$
$$a: C: \mathcal{I} \models a: C \text{ iff } a^{\mathcal{I}} \in C^{\mathcal{I}}$$
$$a, b: R: \mathcal{I} \models a, b: R \text{ iff } \langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$$

Definition (Model)

An interpretation $\mathcal{I} = \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \rangle$ is a model of a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ if it satisfies every axiom in \mathcal{T} and \mathcal{A} .

→ < Ξ → <</p>

Definition (Decision Problems)

Given a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, and two concepts C, D, we say that:

- C is satisfiable w.r.t. \mathcal{K} iff there is a model \mathcal{I} of \mathcal{K} s.t. $C^{\mathcal{I}} \neq \emptyset$;
- C is subsumed by D w.r.t. \mathcal{K} (denoted $\mathcal{K} \models C \sqsubseteq D$) iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K} ;
- C and D are equivalent w.r.t. \mathcal{K} (denoted $\mathcal{K} \models C \equiv D$) iff $C^{\mathcal{I}} = D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K} ;
- *C* and *D* are disjoint w.r.t. \mathcal{K} iff $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ in every model \mathcal{I} of \mathcal{K} .

Definition (Decision Problems)

Given a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, and two concepts \mathcal{C} , \mathcal{D} , we say that:

- C is satisfiable w.r.t. \mathcal{K} iff there is a model \mathcal{I} of \mathcal{K} s.t. $C^{\mathcal{I}} \neq \emptyset$;
- C is subsumed by D w.r.t. \mathcal{K} (denoted $\mathcal{K} \models C \sqsubseteq D$) iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K} ;
- *C* and *D* are equivalent w.r.t. \mathcal{K} (denoted $\mathcal{K} \models C \equiv D$) iff $C^{\mathcal{I}} = D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K} ;
- *C* and *D* are disjoint w.r.t. \mathcal{K} iff $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ in every model \mathcal{I} of \mathcal{K} .

Note: If \mathcal{K} is empty, then satisfiability, subsumption, equivalence, and disjointness of concepts are defined in general by the definition. In such a case we omit " $\mathcal{K} \models$ " from the notation.

b) a (B) b) a (B) b)

Carnivore ⊔ Herbivore ⊑ Animal Carnivore ⊑ ∀eats.(Animal ⊔ AnimalPart) Herbivore ⊑ ∀eats.¬(Animal ⊔ ∃partOf.Animal) Cow ⊑ Hebivore Brain ⊑ ∃partOf.Aminal CowBrain ⊏ Brain ⊓ ∃partOf.Cow Carnivore ⊔ Herbivore ⊑ Animal Carnivore ⊑ ∀eats.(Animal ⊔ AnimalPart) Herbivore ⊑ ∀eats.¬(Animal ⊔ ∃partOf.Animal) Cow ⊑ Hebivore Brain ⊑ ∃partOf.Aminal CowBrain ⊑ Brain ⊓ ∃partOf.Cow MadCow ⊑ Cow ⊓ ∃eats.CowBrain Let us introduce some syntactic sugar:

Definition (Top and bottom concepts)

The top (\top) and bottom (\bot) concepts are defined as syntactic shorthands:

- \top is a placeholder for $A \sqcup \neg A$;
- \perp is a placeholder for $A \sqcap \neg A$;

where A is a new atomic concept not appearing elsewhere in the given KB or a any given concept.

Let us introduce some syntactic sugar:

Definition (Top and bottom concepts)

The top (\top) and bottom (\bot) concepts are defined as syntactic shorthands:

- \top is a placeholder for $A \sqcup \neg A$;
- \perp is a placeholder for $A \sqcap \neg A$;

where A is a new atomic concept not appearing elsewhere in the given KB or a any given concept.

Lemma (Top and bottom semantics)

In any interpretation \mathcal{I} , $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $\perp^{\mathcal{I}} = \emptyset$.

Reduction lemmata:

Lemma

Given a DL KB \mathcal{K} and a concept C: C is satisfiable w.r.t. \mathcal{K} iff $\mathcal{K} \not\models C \sqsubseteq \bot$.

.⊒ ▶ ∢

э

Reduction lemmata:

Lemma

Given a DL KB \mathcal{K} and a concept C: C is satisfiable w.r.t. \mathcal{K} iff $\mathcal{K} \not\models C \sqsubseteq \bot$.

Lemma

Given a DL KB \mathcal{K} and concepts C, D: $\mathcal{K} \models C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable w.r.t. \mathcal{K} .

Reduction lemmata:

Lemma

Given a DL KB \mathcal{K} and a concept C: C is satisfiable w.r.t. \mathcal{K} iff $\mathcal{K} \not\models C \sqsubseteq \bot$.

Lemma

Given a DL KB \mathcal{K} and concepts C, D: $\mathcal{K} \models C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable w.r.t. \mathcal{K} .

Lemma

Given a DL KB \mathcal{K} and concepts C, D: $\mathcal{K} \models C \equiv D$ iff both $\mathcal{K} \models C \sqsubseteq D$ and $\mathcal{K} \models D \sqsubseteq C$.

Reduction lemmata:

Lemma

Given a DL KB \mathcal{K} and a concept C: C is satisfiable w.r.t. \mathcal{K} iff $\mathcal{K} \not\models C \sqsubseteq \bot$.

Lemma

Given a DL KB \mathcal{K} and concepts C, D: $\mathcal{K} \models C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable w.r.t. \mathcal{K} .

Lemma

Given a DL KB \mathcal{K} and concepts C, D: $\mathcal{K} \models C \equiv D$ iff both $\mathcal{K} \models C \sqsubseteq D$ and $\mathcal{K} \models D \sqsubseteq C$.

Lemma

Given a DL KB \mathcal{K} and concepts C, D: C and D are disjoint w.r.t. \mathcal{K} iff $C \sqcap D$ is unsatisfiable w.r.t. \mathcal{K} .

Definition (ABox consistency)

A DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent (also, \mathcal{A} is consistent w.r.t. \mathcal{T}) iff it has at least one model.

Definition (Instance checking)

An individual *a* is an instance of a concept *C* w.r.t. a DL KB \mathcal{K} (denoted $\mathcal{K} \models a : C$) iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$ in all models \mathcal{I} if \mathcal{K} .

Some more reduction lemmata:

Lemma

Given a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, an individual a and a concept C: $\mathcal{K} \models a : C \text{ iff } \mathcal{K}' = (\mathcal{T}, \mathcal{A} \cup \{a : \neg C\}) \text{ is inconsistent.}$

→ <

Some more reduction lemmata:

Lemma

Given a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, an individual a and a concept C: $\mathcal{K} \models a : C \text{ iff } \mathcal{K}' = (\mathcal{T}, \mathcal{A} \cup \{a : \neg C\}) \text{ is inconsistent.}$

Lemma

Given a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, and some concept C: C is satisfiable w.r.t. \mathcal{K} iff $\mathcal{K}' = (\mathcal{T}, \mathcal{A} \cup \{a : C\})$ is consistent, for some new individual a not appearing in \mathcal{K} .

Example (cont.)

 \mathcal{T} :

Carnivore ⊔ Herbivore ⊏ Animal Carnivore $\Box \forall eats.(Animal \sqcup AnimalPart)$ Herbivore $\sqsubseteq \forall eats. \neg (Animal \sqcup \exists partOf.Animal)$ Cow □ Hebivore Brain □ ∃partOf.Aminal $CowBrain \sqsubseteq Brain \sqcap \exists partOf.Cow$ Grass ⊏ Plant DaisyFlower ⊂ Plant DaisyFlower $\Box \neg Grass$

 \mathcal{A} :

daisy : Cow daisy : ∀eats.DaisyFlower g3457:Grass daisy,g3457:eats

• • = • • = •

э