

Broad Phase

Juraj O
nderik | onderik@sccg.sk

Lesson 04 Collision Detection

Lesson 04 Outline

 Collision Detection overview
 Hierarchical grids and Spatial hashing
 Sweep and Prune and Radix Sort
 Pair management – a practical guide
 Demos / tools / libs

Collision Detection Overview

 Collision detection (CD) means
 Calculate when and where are objects overlapping.

 General taxonomy of algorithms
 Static / Pseudo-dynamic / Dynamic

 Stages of CD algorithms
 Broad Phase / (Mid Phase) / Narrow Phase

 Algorithm strategies
 Spatial partitioning / Bounding volume hierarchies /

Coordinate sorting / Feature tracking / Signed distance
maps …

Broad Phase

 Approximate (broad) collision detection phase.
 Principles

 Quickly find pairs of objects which are potentially (probably)
colliding.

 Reject pairs of objects which are distant to each other.
 Techniques

 Uniform Spatial partitioning (Hierarchical grids)
 Complex Spatial partitioning (dynamic BSP, kd trees)
 Coordinate sorting (Sweep and prune, range search)

 Difficult to parallelize (GPU not friendly)

Mid Phase

 Mid (refinement) collision detection phase
 Principles

 Refine pairs from broad phase, simplify the work of narrow
phase

 Techniques
 Preprocess complex geometry into Bounding Volume

Hierarchies
 Decompose non-convex objects into convex parts
 Axis Aligned Bounding Boxes, Oriented Bounding Boxes,

k-Discrete Orientation Polytopes, Swept Sphere Volumes...
 Usually good for parallelization (GPU friendly)

Narrow Phase

 Exact (Narrow) Collision detection phase.
 Principles

 Given a list of potential colliding pairs of objects find exact
time and geometry features (vertices, edges, faces) where
objects penetrate (intersect).

 Reject all non-colliding object pairs.
 Techniques

 Bounding volume hierarchies (AABB, OBB, kDOP …)
 Coherent feature tracking (GJK, V-Clip)
 Signed distance map queries (2d/3d bitmap collisions)

 Naturally suitable for parallelization (GPU friendly)

Collision Detection Phases

 Broad Phase
 Find potential

pairs

Potential colliding
pairs

Collision Detection Phases

 Broad Phase
 Find potential

pairs

 Mid Phase
 Refine pairs

Removed pairsPotential colliding
pairs

Collision Detection Phases

 Broad Phase
 Find potential

pairs

 Narrow Phase
 Find exact

collisions

 Mid Phase
 Refine pairs

Exact colliding
pairs

Removed pairsPotential colliding
pairs

Spatial HashingHierarchical Grids

Uniform Grid – Principle

 Define a uniform grid with cell size s
 For each point p = (x,y,z) we can find

corresponding cell c = (i,j,k) = T(p)
 Tiling function T(p) = ([x/s], [y/s], [z/s])

y

x

s

 s

(x,y)

(i,j)

Uniform Grid – Principle

 Insert object (ID=1) into grid and store it's ID into
overlapping cells based on its AABB

1

1 1

1

1

y

x

s

 s

Uniform Grid – Principle

 Insert object (ID=1) into grid and store it's ID into
overlapping cells based on its AABB

 Insert object (ID=2) into grid …

2

1 1;2

1

2 2

2

2

22

1
2

y

x

s

 s

Uniform Grid – Principle

 Insert all objects into grid and store IDs into cells
 Orange cell has only one ID
 Blue cells contain more Ids - define colliding pairs

 Colliding pairs: (1-2),(1-4),(4-5)

2

3

1;4 1;2

4;5

4;5

3

3 3 1

2 2

2

5

5

2

22

4

4

5 4

1
3 2

y

x

s

 s

Uniform Grid – AddBox

 We want to add new object “A” into grid
 Calculate AABB(A) = (A

x-
, A

y-
, A

z-
, A

x+
, A

y+
, A

z+
) of “A”

 Calculate Cell(A) = (A
i-
, A

j-
, A

k-
, A

i+
, A

j+
, A

k+
)

 For each cell within (A
i-
, A

j-
, A

k-
) and (A

i+
, A

j+
, A

k+
)

 For each ID stored in the cell create pair (ID
k
, ID)

 Add ID of object from the list of IDs (check duplicates)

Uniform Grid – RemoveBox

 We want to remove existing object from grid
 Calculate AABB(A) = (A

x-
, A

y-
, A

z-
, A

x+
, A

y+
, A

z+
) of “A”

 Calculate Cell(A) = (A
i-
, A

j-
, A

k-
, A

i+
, A

j+
, A

k+
)

 For each cell within (A
i-
, A

j-
, A

k-
) and (A

i+
, A

j+
, A

k+
)

 For each ID stored in the cell remove pair (IDk, ID)

 Remove ID of object from the list of IDs

Uniform Grid – UpdateBox

 Object has moved - we need to update it's AABB
and corresponding cells

 Simple approach: call RemoveBox, than AddBox
 Not efficient for larger and coherent objects – many cells

has not changed their state (no add, no remove)
 Effective approach:

 Find quickly only cells where we need to add/remove ID

Uniform Grid - Summary

 Pros
 Simple algorithm – easy to implement
 Fast in special cases – only particles (small dynamic objects)

and static (large) environment
 Cons

 how to find optimal grid size → problem with large vs small
dynamic objects (hierarchical grid)

 Large 3d gird → huge amount of memory (spatial hashing)
 Slow grid update for large objects
 Accuracy depends on the largest resolution

Hierarchical Uniform Grid

 Suppose 4 uniform grids with 2k resolutions
 Grid-0: cell size s

0
 = 1/20 = 1.000

 Grid-1: cell size s
1
 = 1/21 = 0.500

 Grid-2: cell size s
2
 = 1/22 = 0.250

 Grid-3: cell size s
3
 = 1/23 = 0.125

3

2

1

0

s0

s3

Hierarchical Uniform Grid - Principle

 Find resolution of object “C”: Res(C) = 3
 Cell sizes in grids: S = (s

0
,s

1
, … ,s

k
)

 Object box: AABB(C) = (C
x-
, C

y-
, C

z-
, C

x+
, C

y+
, C

z+
)

 Object size: Size(C) = Max(C
x+

 - C
x+-

, C
y+

 - C
y+-

, C
y+

 - C
y+-

)

 Object resolution: Res(C) = i <=> a <= (Size(C)/si) <= b

 Typically: a = 0.5 ; b = 1

C C

C

3

2

1

0

s0

s3

C

Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3

C C

C

3

2

1

0

s0

s3

C

Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3
 Insert “C” into grid-2

C C

C C

C

3

2

1

0

s0

s3

C

Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3
 Insert “C” into grid-2
 Insert “C” into grid-1

C C

C C

C

C

3

2

1

0

s0

s3

C

Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3
 Insert “C” into grid-2
 Insert “C” into grid-1
 Insert “C” into grid-0

C C

C C

C

CD

C

3

2

1

0

s0

s3

C

Hierarchical Uniform Grid - Principle

 Insert other objects into grids
 Build ID sets in cells
 Mark IDs “bold” which represent the resolution of

object

C C E

A D D

B B

DEF F

AB

C C

C

CD

E

E

AB

A B DC E F

3

2

1

0

s0

s3

A B
DC E

F

Hierarchical Uniform Grid - Principle

 During insertion report all ID pairs within each cell
which are either “bold” x “regular” or “bold” x
“bold” IDs
 Cell (AB) has only one pair: A-B
 Cell (DEF) has pairs: D-F and E-F (D-E is not a pair !)

C C E

A D D

B B

DEF F

AB

C C

C

CD

E

E

AB

A B DC E F

3

2

1

0

s0

s3

A B
DC E

F

Hierarchical Uniform Grid - Methods

 AddBox(A)
 Calculate AABB(A), resolution r = Res(A), add box into all grids

(0 to r), report pair (A-A
k
) only if grid resolution is

Min(Res(A), Res(A
k
))

 RemoveBox
 Calculate AABB(A), resolution r = Res(A), remove box from all

grids (0 to r), remove pair (A-A
k
) only if grid resolution is

Min(Res(A), Res(A
k
))

 UpdateBox
 Since objects ID are stored only in grids with equal or larger

resolutions as Res(A) – no need for optimizing update –
simply RemoveBox than AddBox every modified object

Hierarchical Uniform Grid - Summary

 Pros
 Handle small and large dynamic objects No optimal grid size
 True linear time broad phase algorithm

 Cons
 More memory (usually 2 times more)
 Must update (hash) more grids for each object
 Accuracy depends on the largest resolution

 Constant Update → Linear time complexity
 Assuming R = (s+ / s-) = largest / smallest AABB size is constant
 We need k = log(R) grids – is constant
 One object marks O(log R) cells – is constant
 Add/Remove/Update - are constant → time complexity is O(n)

Spatial Hashing

 Motivation: large grids are usually very sparse –
we need to store data only for non-empty cells –
but we need fast O(1) access based on (x,y,z)

 Given point p=(x,y,z) laying within cell c=(i,j,k) we
define spatial hashing function as

 hash(i,j,k) = (ip
1
 xor jp

2
 xor jp

3
) mod n

 Where p
1
, p

2
, p

3
 are large prime numbers and n is

the size of hash table
 Hash collision are solved with buckets

Sweep & Prune

Sweep-And-Prune (SAP)

 Broad phase collision detection algorithm based
on Separating Axes Theorem.

 Pros
 Suitable for physically based motions
 Exploits spatial and temporal coherence
 Practical average O(n) broad phase algorithm

 Cons
 Uses bad fitting axis-aligned boxes (AABB).
 Not efficient for complex scenes with prolong objects
 Too many collisions for high-velocity objects

Separating Plane Theorem

 Two convex objects do NOT penetrate (are
separated) if and only if there exists a
(separating) plane which separates them
 i.e. first (second) object is fully above (below) this plane.

Separating plane

Separating Axis Theorem

 Two convex objects do NOT penetration (are
separated) if and only if there exists a
(separating) axis on which projections of objects
are separated
 i.e. Intervals formed by minimal and maximal projections of

objects do not intersect.

Separating plane

Separating
Axis

Separating Duality Principle

 For Convex objects
 Separating Plane Theorem (SPT)
 Separating Axes Theorem (SAT)

 SAP and STP are equal (dual) !
 Separating plane and separating axis are perpendicular

 SAP  STP

SAP – Algorithm Principle

 Suppose a scene with 5 (not necessarily convex)
objects

y

x

SAP – Algorithm Principle

 Fit each object into its smallest enclosing AABB
 Label boxes as : 1, 2, 3, 4, 5 according to the

associated objects.

1 4

5
3 2

y

x

SAP – Algorithm Principle

 Project AABBs onto axis X.
 Form list of intervals of minimal and maximal

projections on X axis.

1 4

5
3 2

y

x

SAP – Algorithm Principle

 Project AABBs onto axis Y.
 Form list of intervals of minimal and maximal

projections on Y axis.

1 4

5
3 2

y

x

SAP – Algorithm Principle

 Sort list of projections (limits) on X axis.
 Sort list of projections (limits) on Y axis.

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

.

.

.
y3

y2

y1

SAP – Algorithm Principle

 Limits are marked as min (green) and max (blue)
for associated AABB.

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

SAP – Algorithm Principle

 Sweep X-limits from first to last while building set
of open intervals.

 When adding new min-limit to the set, report
potential collision pair between all boxes from set
and the new box.

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

SAP – Algorithm Principle

 Open interval set example:
 (), (1), (1;3), (1), (1;4), (4), (), (5), (), (2), ()

 Reported pairs: (1-3) and (1-4)

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

SAP – Algorithm Principle

 Do the same on Y-Axis:
 Set: (), (4), (4;1), (4), (4;5), (5), (5;2), (5;2;3), (2;3), (2), ()
 Pairs: (1-4), (4-5), (5-2), (5-3), (2-3)

1 4

5
3 2

y

x

SAP – Algorithm Principle

 Find common pairs in all swept directions
 i.e. Real intersecting AABB pairs = SetX ^ SetY

 Pairs = SetX ^ SetY = { (1-4) }

1 4

5
3 2

y

x

SAP - Summary

 To achieve linear time O(n) complexity in average
case we must
 Move objects in a coherent fashion (physical motion)
 Use incremental sort of limits. Due to coherence most of

limits are sorted. Insert sort needs only constant swaps.
 Implement an efficient “pair management” i.e. fast set

intersection of axis pair sets (Pairs = SetX ^ SetY ^ SetZ)
 Problems

 Since objects tend to settle down (usually along Z-axis)
during the simulation, large interval clustering can happen

SAP – Incremental Update

 Reported pairs: (1-3) and (1-4)
 Suppose object 5 moves right

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

SAP – Incremental Update

 Reported pairs: (1-3) and (1-4)
 Suppose object 5 moves right
 End limit x

8
 pass over x

9
 breaking the order

 In this case we report new pair (2-5)

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x9 x8 x10

SAP – Incremental Update

 Select moving objects and update theirs limits
 When a start limit moves right and

 passes over start limit – report nothing

 passes over end limit – remove pair

 When a start limit moves left and
 passes over start limit – report nothing

 passes over end limit – add pair

 When an end limit moves right and
 passes over start limit – add pair

 passes over end limit – report nothing

 When an end limit moves left and
 passes over start limit – remove pair

 passes over end limit – report nothing

SAP – Incremental Update

Nothing Nothing Nothing Nothing

Add Add Remove Remove

 Limit swap cases

Pair Management

a practical guide

Pair Management

 An ID pair is defined as (ID
1
, ID

2
)

 Pair Manager is a data structure allowing quickly
 Adding new pair in O(1): AddPair(ID

1
, ID

2
)

 Removing an existing pair in O(1): RemovePair(ID
1
, ID

2
)

 Finding an existing pair in O(1): FindPair(ID
1
, ID

2
)

 Enumerating all pairs in O(n): GetPairs()
 Trivial approach is to use

 big matrix to store pair infos - just look at (ID
1
, ID

2
) item

 simple list to store set of active pairs.
 Huge amount of memory, pair list update can be slow
 Can be efficient for < 1000 objects (matrix size 10002 !!!)

Efficient Pair Management

 Use spatial (2d) hashing:
 h = hash(ID

1
, ID

2
) = (ID

1
*p1 + ID

2
*p2) mod N

 Use array bag structure to hold pairs
 Preallocate “capacity” of data (usually 2 x length)
 AddPair – stores new pair at the end of array (can resize)
 RemovePair – move last pair to the removed index – fill the

hole
 Point from hash table to pair list
 Chain pairs when hash collision occurs

Efficient Pair Management

ID
1

ID
2 (ID

1
, ID

2
) hash(ID1,ID2)

Hash table

Pair array

Hash collision chain
Virtual ID pair matrix

 In hash table we store pointer to first pair in the
hash collision chain (length k) – should be as small
as possible. When k > K (constant) we resize hash
table (rehash all pairs). Operations are O(k)=O(1)

D
e

m
o

s
/

to
o

ls
 /

 li
b

s

Demos / tools / libs

 Free Open Source Libraries:

 Bullet Physics Library: http://www.bulletphysics.org
 Bullet collision detection framework

 http://bulletphysics.org/mediawiki-1.5.8/index.php/CDTestFramework

 Box2D: http://www.box2d.org/
 Chipmunk: http://howlingmoonsoftware.com
 SOFA: http://www.sofa-framework.org/
 Tokamak: http://www.tokamakphysics.com

http://www.bulletphysics.org/
http://bulletphysics.org/mediawiki-1.5.8/index.php/CDTestFramework
http://www.box2d.org/
http://howlingmoonsoftware.com/
http://www.sofa-framework.org/
http://www.tokamakphysics.com/

the
end
that was enough...

	Snímok 1
	Snímok 2
	Snímok 3
	Snímok 4
	Snímok 5
	Snímok 6
	Snímok 7
	Snímok 8
	Snímok 9
	Snímok 10
	Snímok 11
	Snímok 12
	Snímok 13
	Snímok 14
	Snímok 15
	Snímok 16
	Snímok 17
	Snímok 18
	Snímok 19
	Snímok 20
	Snímok 21
	Snímok 22
	Snímok 23
	Snímok 24
	Snímok 25
	Snímok 26
	Snímok 27
	Snímok 28
	Snímok 29
	Snímok 30
	Snímok 31
	Snímok 32
	Snímok 33
	Snímok 34
	Snímok 35
	Snímok 36
	Snímok 37
	Snímok 38
	Snímok 39
	Snímok 40
	Snímok 41
	Snímok 42
	Snímok 43
	Snímok 44
	Snímok 45
	Snímok 46
	Snímok 47
	Snímok 48
	Snímok 49
	Snímok 50
	Snímok 51
	Snímok 52
	Snímok 53
	Snímok 54
	Snímok 55
	Snímok 56

