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Lesson 04 Outline

 Collision Detection overview
 Hierarchical grids and Spatial hashing
 Sweep and Prune and Radix Sort
 Pair management – a practical guide
 Demos / tools / libs



  

Collision Detection Overview

 Collision detection (CD) means
 Calculate when and where are objects overlapping.

 General taxonomy of algorithms
 Static / Pseudo-dynamic / Dynamic

 Stages of CD algorithms
 Broad Phase / (Mid Phase) / Narrow Phase

 Algorithm strategies
 Spatial partitioning / Bounding volume hierarchies / 

Coordinate sorting / Feature tracking / Signed distance 
maps …



  

Broad Phase

 Approximate (broad) collision detection phase.
 Principles

 Quickly find pairs of objects which are potentially (probably) 
colliding. 

 Reject pairs of objects which are distant to each other.
 Techniques

 Uniform Spatial partitioning (Hierarchical grids)
 Complex Spatial partitioning (dynamic BSP,  kd trees)
 Coordinate sorting (Sweep and prune, range search)

 Difficult to parallelize (GPU not friendly)



  

Mid Phase

 Mid (refinement) collision detection phase
 Principles

 Refine pairs from broad phase, simplify the work of narrow 
phase 

 Techniques
 Preprocess complex geometry into Bounding Volume 

Hierarchies
 Decompose non-convex objects into convex parts
 Axis Aligned Bounding Boxes, Oriented Bounding Boxes,         

k-Discrete Orientation Polytopes, Swept Sphere Volumes...
 Usually good for parallelization (GPU friendly) 



  

Narrow Phase

 Exact (Narrow) Collision detection phase.
 Principles

 Given a list of potential colliding pairs of objects find exact 
time and geometry features (vertices, edges, faces) where 
objects penetrate (intersect).

 Reject all non-colliding object pairs.
 Techniques

 Bounding volume hierarchies (AABB, OBB, kDOP …)
 Coherent feature tracking (GJK, V-Clip)
 Signed distance map queries (2d/3d bitmap collisions)

 Naturally suitable for parallelization (GPU friendly)



  

Collision Detection Phases

 Broad Phase
 Find potential 

pairs

Potential colliding
pairs 



  

Collision Detection Phases

 Broad Phase
 Find potential 

pairs

 Mid Phase
 Refine pairs

Removed pairsPotential colliding
pairs 



  

Collision Detection Phases

 Broad Phase
 Find potential 

pairs

 Narrow Phase
 Find exact 

collisions

 Mid Phase
 Refine pairs

Exact colliding
pairs

Removed pairsPotential colliding
pairs 



  

Spatial HashingHierarchical Grids



  

Uniform Grid – Principle

 Define a uniform grid with cell size s
 For each point p = (x,y,z) we can find 

corresponding cell c = (i,j,k) = T(p)
 Tiling function T(p) = ([x/s], [y/s], [z/s])

y

x

 
s

 s

(x,y)

(i,j)



  

Uniform Grid – Principle

 Insert object (ID=1) into grid and store it's ID into 
overlapping cells based on its AABB 
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Uniform Grid – Principle

 Insert object (ID=1) into grid and store it's ID into 
overlapping cells based on its AABB

 Insert object (ID=2) into grid …

2

1 1;2

1

2 2

2

2

22

1
2

y

x

 
s

 s



  

Uniform Grid – Principle

 Insert all objects into grid and store IDs into cells
 Orange cell has only one ID
 Blue cells contain more Ids - define colliding pairs

 Colliding pairs: (1-2),(1-4),(4-5) 
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Uniform Grid – AddBox

 We want to add new object “A” into grid
 Calculate AABB(A) = (A

x-
, A

y-
, A

z-
, A

x+
, A

y+
, A

z+
) of “A”

 Calculate Cell(A) = (A
i-
, A

j-
, A

k-
, A

i+
, A

j+
, A

k+
)

 For each cell within (A
i-
, A

j-
, A

k-
) and (A

i+
, A

j+
, A

k+
)

 For each ID stored in the cell create pair (ID
k
, ID)  

 Add ID of object from the list of IDs (check duplicates)



  

Uniform Grid – RemoveBox

 We want to remove existing object from grid
 Calculate AABB(A) = (A

x-
, A

y-
, A

z-
, A

x+
, A

y+
, A

z+
) of “A”

 Calculate Cell(A) = (A
i-
, A

j-
, A

k-
, A

i+
, A

j+
, A

k+
)

 For each cell within (A
i-
, A

j-
, A

k-
) and (A

i+
, A

j+
, A

k+
)

 For each ID stored in the cell remove pair (IDk, ID)  

 Remove ID of object from the list of IDs



  

Uniform Grid – UpdateBox

 Object has moved - we need to update it's AABB 
and corresponding cells

 Simple approach: call RemoveBox, than AddBox
 Not efficient for larger and coherent objects – many cells 

has not changed their state (no add, no remove)
 Effective approach:

 Find quickly only cells where we need to add/remove ID



  

Uniform Grid - Summary

 Pros
 Simple algorithm – easy to implement
 Fast in special cases – only particles (small dynamic objects) 

and static (large) environment  
 Cons

 how to find optimal grid size → problem with large vs small 
dynamic objects (hierarchical grid)

 Large 3d gird → huge amount of memory (spatial hashing)
 Slow grid update for large objects
 Accuracy depends on the largest resolution



  

Hierarchical Uniform Grid

 Suppose 4 uniform grids with 2k resolutions
 Grid-0: cell size s

0
 = 1/20 = 1.000

 Grid-1: cell size s
1
 = 1/21 = 0.500

 Grid-2: cell size s
2
 = 1/22 = 0.250

 Grid-3: cell size s
3
 = 1/23 = 0.125
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Hierarchical Uniform Grid - Principle

 Find resolution of object “C”: Res(C) = 3
 Cell sizes in grids: S = (s

0
,s

1
, … ,s

k
)

 Object box: AABB(C) = (C
x-
, C

y-
, C

z-
, C

x+
, C

y+
, C

z+
)

 Object size: Size(C) = Max(C
x+

 - C
x+-

, C
y+

 - C
y+-

, C
y+

 - C
y+-

)

 Object resolution: Res(C) = i    <=>   a <= (Size(C)/si) <= b

                                                        Typically: a = 0.5 ; b = 1
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Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3
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Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3
 Insert “C” into grid-2
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Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3
 Insert “C” into grid-2
 Insert “C” into grid-1
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Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3
 Insert “C” into grid-2
 Insert “C” into grid-1
 Insert “C” into grid-0

C C

C C

C

CD

C

3

2

1

0

s0

s3

C



  

Hierarchical Uniform Grid - Principle

 Insert other objects into grids
 Build ID sets in cells
 Mark IDs “bold” which represent the resolution of 

object
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Hierarchical Uniform Grid - Principle

 During insertion report all ID pairs within each cell 
which are either “bold” x “regular” or “bold” x 
“bold” IDs
 Cell (AB) has only one pair: A-B
 Cell (DEF) has pairs: D-F and E-F (D-E is not a pair !)
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Hierarchical Uniform Grid - Methods

 AddBox(A)
 Calculate AABB(A), resolution r = Res(A), add box into all grids 

(0 to r), report pair (A-A
k
) only if grid resolution is  

Min(Res(A), Res(A
k
))

 RemoveBox
 Calculate AABB(A), resolution r = Res(A), remove box from all 

grids (0 to r), remove pair (A-A
k
) only if grid resolution is  

Min(Res(A), Res(A
k
))

 UpdateBox
 Since objects ID are stored only in grids with equal or larger 

resolutions as Res(A) – no need for optimizing update – 
simply RemoveBox than AddBox every modified object



  

Hierarchical Uniform Grid - Summary

 Pros
 Handle small and large dynamic objects No optimal grid size
 True linear time broad phase algorithm

 Cons
 More memory (usually 2 times more)
 Must update (hash) more grids for each object
 Accuracy depends on the largest resolution

 Constant Update → Linear time complexity
 Assuming R = (s+ / s-) = largest / smallest AABB size is constant
 We need k = log(R) grids – is constant
 One object marks O(log R) cells – is constant
 Add/Remove/Update - are constant → time complexity is O(n)



  

Spatial Hashing

 Motivation: large grids are usually very sparse – 
we need to store data only for non-empty cells – 
but we need fast O(1) access based on (x,y,z)

 Given point p=(x,y,z) laying within cell c=(i,j,k) we 
define spatial hashing function as

 hash(i,j,k) = (ip
1
 xor jp

2 
 xor jp

3
) mod n

 Where p
1
, p

2
, p

3
 are large prime numbers and n is 

the size of hash table
 Hash collision are solved with buckets 



  

Sweep & Prune



  

Sweep-And-Prune (SAP)

 Broad phase collision detection algorithm based 
on Separating Axes Theorem.

 Pros
 Suitable for physically based motions
 Exploits spatial and temporal coherence
 Practical average O(n) broad phase algorithm

 Cons
 Uses bad fitting axis-aligned boxes (AABB).
 Not efficient for complex scenes with prolong objects 
 Too many collisions for high-velocity objects



  

Separating Plane Theorem

 Two convex objects do NOT penetrate (are 
separated) if and only if there exists a 
(separating) plane which separates them
 i.e. first (second) object is fully above (below) this plane. 

Separating plane



  

Separating Axis Theorem

 Two convex objects do NOT penetration (are 
separated) if and only if there exists a 
(separating) axis on which projections of objects 
are separated
 i.e. Intervals formed by minimal and maximal projections of 

objects do not intersect.

Separating plane

Separating
Axis



  

Separating Duality Principle

 For Convex objects
 Separating Plane Theorem (SPT) 
 Separating Axes Theorem (SAT)

 SAP and STP are equal (dual) !
 Separating plane and separating axis are  perpendicular

            SAP  STP



  

SAP – Algorithm Principle

 Suppose a scene with 5 (not necessarily convex) 
objects

y

x



  

SAP – Algorithm Principle

 Fit each object into its smallest enclosing AABB 
 Label boxes as : 1, 2, 3, 4, 5 according to the 

associated objects.
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SAP – Algorithm Principle

 Project AABBs onto axis X.
 Form list of intervals of minimal and maximal 

projections on X axis.
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SAP – Algorithm Principle

 Project AABBs onto axis Y.
 Form list of intervals of minimal and maximal 

projections on Y axis.
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SAP – Algorithm Principle

 Sort list of projections (limits) on X axis.
 Sort list of projections (limits) on Y axis.
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SAP – Algorithm Principle

 Limits are marked as min (green) and max (blue) 
for associated AABB.
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SAP – Algorithm Principle

 Sweep X-limits from first to last while building set 
of open intervals.

 When adding new min-limit to the set, report 
potential collision pair between all boxes from set 
and the new box. 

1 4

5
3 2

y

x
 x1 x2   x3 x4 x5          x6  x7     x8  x9               x10



  

SAP – Algorithm Principle

 Open interval set example:
 (), (1), (1;3), (1), (1;4), (4), (), (5), (), (2), ()

 Reported pairs: (1-3) and (1-4)
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SAP – Algorithm Principle

 Do the same on Y-Axis:
 Set: (), (4), (4;1), (4), (4;5), (5), (5;2), (5;2;3), (2;3), (2), ()
 Pairs: (1-4), (4-5), (5-2), (5-3), (2-3)
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SAP – Algorithm Principle

 Find common pairs in all swept directions
 i.e.  Real intersecting AABB pairs = SetX ^ SetY

 Pairs = SetX ^ SetY = { (1-4) }
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SAP - Summary

 To achieve linear time O(n) complexity in average 
case we must
 Move objects in a coherent fashion (physical motion)
 Use incremental sort of limits. Due to coherence most of 

limits are sorted. Insert sort needs only constant swaps.
 Implement an efficient “pair management” i.e. fast set 

intersection of axis pair sets (Pairs = SetX ^ SetY ^ SetZ)
 Problems

 Since objects tend to settle down (usually along Z-axis) 
during the simulation, large interval clustering can happen 



  

SAP – Incremental Update

 Reported pairs: (1-3) and (1-4)
 Suppose object 5 moves right
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SAP – Incremental Update

 Reported pairs: (1-3) and (1-4)
 Suppose object 5 moves right
 End limit x

8
 pass over x

9
 breaking the order

 In this case we report new pair (2-5)
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SAP – Incremental Update

 Select moving objects and update theirs limits
 When a start limit moves right and

 passes over start limit – report nothing

 passes over end limit – remove pair

 When a start limit moves left and
 passes over start limit – report nothing

 passes over end limit – add pair

 When an end limit moves right and
 passes over start limit – add pair

 passes over end limit – report nothing

 When an end limit moves left and
 passes over start limit – remove pair

 passes over end limit – report nothing



  

SAP – Incremental Update

Nothing Nothing Nothing Nothing

Add Add Remove Remove

 Limit swap cases



  

Pair Management

a practical guide



  

Pair Management

 An ID pair is defined as (ID
1
, ID

2
)

 Pair Manager is a data structure allowing quickly
 Adding new pair in O(1): AddPair(ID

1
, ID

2
)

 Removing an existing pair in O(1): RemovePair(ID
1
, ID

2
)

 Finding an existing pair in O(1): FindPair(ID
1
, ID

2
)

 Enumerating all pairs in O(n): GetPairs()
 Trivial approach is to use

 big matrix to store pair infos - just look at (ID
1
, ID

2
) item

 simple list to store set of active pairs.
 Huge amount of memory, pair list update can be slow
 Can be efficient for < 1000 objects (matrix size 10002 !!!)



  

Efficient Pair Management

 Use spatial (2d) hashing:
 h = hash(ID

1
, ID

2
) = (ID

1
*p1 +  ID

2
*p2) mod N

 Use array bag structure to hold pairs
 Preallocate “capacity” of data (usually 2 x length)
 AddPair – stores new pair at the end of array (can resize)
 RemovePair – move last pair to the removed index – fill the 

hole
 Point from hash table to pair list
 Chain pairs when hash collision occurs



  

Efficient Pair Management

ID
1

ID
2 (ID

1
, ID

2
) hash(ID1,ID2)

Hash table

Pair array

Hash collision chain
Virtual ID pair matrix

 In hash table we store pointer to first pair in the 
hash collision chain (length k) – should be as small 
as possible. When k > K (constant) we resize hash 
table (rehash all pairs). Operations are O(k)=O(1) 
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Demos / tools / libs

 Free Open Source Libraries:

 Bullet Physics Library: http://www.bulletphysics.org
 Bullet collision detection framework

 http://bulletphysics.org/mediawiki-1.5.8/index.php/CDTestFramework

 Box2D: http://www.box2d.org/
 Chipmunk: http://howlingmoonsoftware.com
 SOFA: http://www.sofa-framework.org/
 Tokamak: http://www.tokamakphysics.com

http://www.bulletphysics.org/
http://bulletphysics.org/mediawiki-1.5.8/index.php/CDTestFramework
http://www.box2d.org/
http://howlingmoonsoftware.com/
http://www.sofa-framework.org/
http://www.tokamakphysics.com/


  

the 
end
that was enough...
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