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Integration difficulties
7 semantic issues (OWA vs. CWA)
7 pragmatic problems (decidability)

A number of approaches proposed
• CARIN [Levy and Rousset, 1998]
• AL-log [Donini et al., 1998]
• DL-log [Rosati, 1999]
• Description Logic Programs [Grosof et al., 2003]
• dl-programs [Eiter et al., 2004]
• HEX-programs [Eiter et al., 2005]
• Semantic Web Rules Language (SWRL) [Horrocks et al., 2004]
• DL+log [Rosati, 2006]
• Description Logic Rules [Krötzsch et al., 2008]
• Hybrid MKNF Knowledge Bases [Motik and Rosati, 2010]
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• Hybrid MKNF Knowledge Bases [Motik and Rosati, 2010]
• . . .



Hybrid Knowledge Bases

Integration difficulties
7 semantic issues (OWA vs. CWA)
7 pragmatic problems (decidability)

A number of approaches proposed
• CARIN [Levy and Rousset, 1998]
• AL-log [Donini et al., 1998]
• DL-log [Rosati, 1999]
• Description Logic Programs [Grosof et al., 2003]
• dl-programs [Eiter et al., 2004]
• HEX-programs [Eiter et al., 2005]
• Semantic Web Rules Language (SWRL) [Horrocks et al., 2004]
• DL+log [Rosati, 2006]
• Description Logic Rules [Krötzsch et al., 2008]
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Hybrid MKNF Knowledge Bases [Motik and Rosati, 2010] (based on
the logic of Minimal Knowledge and Negation as Failure
[Lifschitz, 1991]).

3 theoretically neat
3 tight integration between the two distinct formalisms
3 generalise most previous approaches
3 known how to achieve decidability and tractability

Example (Cargo Imports Knowledge Base)

Admissible(I)← ∼SuspectedBadGuy(I).

Approved(C)← Admissible(I),RegisteredImporterOf(I,C).

LowRisk ≡ Approved u (∃From.EUCountry)
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Knowledge evolves with time.

Example (Cargo Import Knowledge Base Updates)

c : (¬LowRiskCommodity)

∼ApprovedImporterOf(i ,C)← Tomato(C).

Overall Goal
Deal with updates of Hybrid Knowledge Bases.

What is out there?
• Belief Update
• Rule Update
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• reasoning about action and databases with NULL values
• models = possible real states of represented domain;

updated independently
• operator class⇔ properties = representation theorem

Theorem (Representation Theorem Template)
Let C be a (constructively defined) class of operators, P a set of
properties and � an update operator.
Then � belongs to C if and only if � satisfies properties from P.



Belief Update on DL Ontologies

• general problems:
7 representability
7 computational complexity

• existing work on ABox updates with a no or a static TBox
addresses these issues

• issues with TBox updates

{A w B1 } � {B1 w C } |= A w C
{¬A w B2 } � {B2 w C } |= ¬A w C

Theorem (Unsuitability of Belief Update for TBoxes)
It is impossible for an update operator to satisfy (KM 3), (KM 4),
(KM 8) and the two properties above.
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Belief Update is very far from a
solution to ontology updates
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• NP-hard in general
• polynomial for ABox updates in certain Description Logics

DLP
• most classical postulates turned out unsuitable for them
• syntax-sensitive
• inertia applied to rules
• NP-hardness inherited from stable model semantics
• well-founded version stays polynomial

Combining them is difficult!
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3 Primacy of new information
3 Syntax-independence w.r.t. to T and A
3 Generalisation of stable model semantics
3 Generalisation of Winslett’s update semantics
3 Immunity to empty updates

Proposition
Let P be a finite ground program containing only facts, T a
TBox, A a sequence of ABoxes and M an MKNF interpretation.
Then M is a minimal change dynamic stable model of P ⊕T A if
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where SP = {p | K p ∈ P }.



1. Static Rules and Dynamic ABox (Properties)

3 Primacy of new information
3 Syntax-independence w.r.t. to T and A
3 Generalisation of stable model semantics
3 Generalisation of Winslett’s update semantics
3 Immunity to empty updates

Proposition
Let P be a finite ground program, T be a TBox and
A = (A1,A2, . . . ,An) a sequence of ABoxes (where n ≥ 1). Let
A′ = (A1,A2, . . . ,Ai−1,Ai , ∅,Ai+1, . . . ,An) for some
i ∈ {0,1,2, . . . ,n }. Then an MKNF interpretation M is a
minimal change dynamic stable model of P ⊕T A if and only if
M is a minimal change dynamic stable model of P ⊕T A′.



1. Static Rules and Dynamic ABox (Properties)

3 Primacy of new information
3 Syntax-independence w.r.t. to T and A
3 Generalisation of stable model semantics
3 Generalisation of Winslett’s update semantics
3 Immunity to empty updates

Proposition
Let T be a TBox, A an ABox and M an MKNF interpretation.
Then M is a minimal change dynamic stable model of ∅ ⊕T A if
and only if M = mod(T ∪ A).
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2. Modular Update (Splitting Theorem)

K

A ≡ B u C
p(Z )← ∼A(Z ).

D v ∃R.E
q(Z )← B(Z ),∼D(Z ).

Model of K

Top of K

Bottom of K

X

Reduct Y

U = { A/1,B/1,C/1,p/1 }

Theorem (Splitting Theorem)
Let U be a splitting set for a hybrid knowledge base K.
Then M is an MKNF model of K if and only if M = X ∩ Y
for some solution 〈X ,Y 〉 to K w.r.t. U.
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Definition (Splitting Sequence)
A splitting sequence for a hybrid knowledge base K is a
monotone, continuous sequence U = 〈Uα〉α<µ of splitting sets
for K such that

⋃
α<µ Uα = P.

Theorem (Splitting Sequence Theorem)
Let U = 〈Uα〉α<µ be a splitting sequence for a hybrid
knowledge base K. Then M is an MKNF model of K if and only
if M =

⋂
α<µ Xα for some solution 〈Xα〉α<µ to K w.r.t. U.
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Question
Given
• an update semantics for 〈Oi〉i<n and
• an update semantics for 〈Pi〉i<n,

to what type of K = 〈Ki〉i<n can we easily assign an update
semantics?

Definition
Let U = 〈Uα〉α<µ be an update-enabling splitting sequence for
a dynamic hybrid knowledge base K. We say that an MKNF
interpretation M is a dynamic MKNF model of K w.r.t. U if
M =

⋂
α<µ Xα for some solution 〈Xα〉α<µ to K w.r.t. U.
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Theorem (Independence of Splitting Sequence)
Let U,V be update-enabling splitting sequences for a dynamic
hybrid knowledge base K. Then M is a dynamic MKNF model
of K w.r.t. U if and only if M is a dynamic MKNF model of K
w.r.t. V .
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• (KM 4) + stable or strong equivalence
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• SE-Models: monotonic semantics more expressive than
stable models

• view a program as the set of sets of SE-models of its rules
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Conclusion

Addressing Hybrid Updates
1 by restricting the dynamic part of the knowledge base
2 by restricting interaction between DL axioms and rules
3 by aiming to create semantic counterparts of the rule

update semantics
Open Questions
• DL ontology update

• principles in line with intuitions
• operators
• representability

• rule update
• logical foundation more expressive than SE-models
• semantic characterisation of existing operators (or similar)



Thank you!

Thank you!
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