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Example

Assuming a theory Γ:

rain→ wet_road

rain→ wet_grass

sun↔ ¬rain
irrigation→ wet_grass

sun ∧ hot_day → irrigation

Observing ∆ = {wet_grass}, what can we conclude?

Nothing really. But we can sat that A = {rain} is a possible
explanation of ∆.
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Abduction

De�nition (Abduction)

Given two sets of formulae E (possible e�ects) and Φ (possible
explanations) s.t. E ∩ Φ = ∅, and given a set of formulae Γ, we say
that A ⊆ Φ abductively explains ∆ ⊆ E w.r.t. the background
theory Γ if:

Γ ∪ A is consistent

Γ 6|= ∆

Γ ∪ A |= ∆
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Example (cont.)

Given E = {wet_road ,wet_grass}, Φ = {rain, sun, irrigation,
hot_day}, and a theory Γ:

rain→ wet_road

rain→ wet_grass

sun↔ ¬rain
irrigation→ wet_grass

sun ∧ hot_day → irrigation

What are all possible explanations of ∆ = {wet_grass}?

A1 = {rain}
A2 = {irrigation}
A3 = {sun, hot_day}
A4 = {sun, irigation}
A5 = {sun, hot_day , irigation}
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Example (cont.)
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Example (cont.)
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Strength of explanations

Not all explanations are equally preferred. A2 and A5 can be
deduced from A3 using Γ. We say that A3 is stronger then A2 and
A5.

De�nition

Given Γ, ∆ ⊆ E , and A,A′ ⊆ Φ s.t. A 6= A′. We say that the
explanation A′ is

stronger than A w.r.t. Γ if Γ ∪ A′ |= A and Γ ∪ A 6|= A′

independent w.r.t. Γ if no stronger explanation Γ exists.
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Minimality of explanations

Explanations A1,A3,A4 are all independent, still A4 can be seen as
less preferred because it has a proper subset (A2) which is an
explanation too.

De�nition

Given Γ, ∆ ⊆ E we say that an explanation A ⊆ Φ of ∆ w.r.t. Γ is
minimal if there is no A′ ( A that is also an explanation of ∆
w.r.t. Γ.

Martin Baláº, Martin Homola Lecture 11: Abduction



Minimality of explanations

Explanations A1,A3,A4 are all independent, still A4 can be seen as
less preferred because it has a proper subset (A2) which is an
explanation too.

De�nition

Given Γ, ∆ ⊆ E we say that an explanation A ⊆ Φ of ∆ w.r.t. Γ is
minimal if there is no A′ ( A that is also an explanation of ∆
w.r.t. Γ.

Martin Baláº, Martin Homola Lecture 11: Abduction



Computing explanations

A more abstract look at the abduction problem:

De�nition (Abduction Problem)

An abduction problem is a quadruple 〈∆,Φ, e, <〉 s.t.
∆ is a set of observations (to be explained)

Φ is a set of hypotheses (possible explanations)

e : 2Φ → 2∆ is an explanation function

< ⊆ 2Φ × 2Φ, a plausibility oder on possible explanations is a
partial order.

Note: The explanation functions e stands for the deduction w.r.t.
some background theory Γ: if e(H) = D ⊆ ∆ in means that the set
of hypotheses H explains the set of observations D.

The plausibility order stands for preference on hypotheses. We
always prefer the more plausible hypothesis.
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Computing explanations (cont.)

We can easily compute some explanation if the abduction problem
is independent:

De�nition (Independent Abduction Problem)

An abduction problem 〈∆,Φ, e, <〉 is independent if

(∀H ⊆ Φ) e(H) =
⋃
h∈H

e(h)
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Computing explanations (cont.)

If an explanation of an independent abduction problem 〈∆,Φ, e, <〉
exists, the following greedy algorithm computes some explanation:

1 if e(Φ) 6= ∆ return �No explanation� and terminate
2 H := Φ
3 for all h ∈ Φ do

1 if e(H \ {h}) = ∆ then H := H \ {h}
4 return H
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Computing best explanations (cont.)

De�nition (Ordered Abduction Problem)

An abduction problem 〈∆,Φ, e, <〉 is ordered if if for all h, h′ ∈ Φ
s.t. h 6= h′ we have either h < h′ or h′ < h.

De�nition (Best explanations)

Given an abduction problem 〈∆,Φ, e, <〉, an explanation H ⊆ Φ if
∆ is best if there is no explanation H ′ ⊆ Φ s.t. H < H ′.

Note that more than one best explanation is possible as < is a
partial order.
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Computing best explanations (cont.)
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Computing best explanations (cont.)

If an explanation of an ordered independent abduction problem
〈∆,Φ, e, <〉 exists, the following greedy algorithm computes some
best explanation:

1 if e(Φ) 6= ∆ return �No explanation� and terminate
2 H := Φ
3 for all h ∈ Φ ordered from lest to most plausible do

1 if e(H \ {h}) = ∆ then H := H \ {h}
4 return H
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