Lecture 11: Abduction 2-AIN-144/2-IKV-131 Knowledge Reperesentation & Reasoning

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

09 May 2013

Assuming a theory Γ :

 $rain
ightarrow wet_road rain
ightarrow wet_grass sun <math>\leftrightarrow \neg$ rain irrigation $ightarrow wet_grass$ sun \wedge hot_day ightarrow irrigation

Observing $\Delta = \{wet_grass\}$, what can we conclude?

Assuming a theory Γ :

 $rain
ightarrow wet_road rain
ightarrow wet_grass sun <math>\leftrightarrow \neg$ rain irrigation $ightarrow wet_grass$ sun \wedge hot_day ightarrow irrigation

Observing $\Delta = \{wet_grass\}$, what can we conclude? Nothing really. But we can sat that $A = \{rain\}$ is a possible explanation of Δ .

Definition (Abduction)

Given two sets of formulae \mathcal{E} (possible effects) and Φ (possible explanations) s.t. $\mathcal{E} \cap \Phi = \emptyset$, and given a set of formulae Γ , we say that $A \subseteq \Phi$ abductively explains $\Delta \subseteq \mathcal{E}$ w.r.t. the background theory Γ if:

- $\Gamma \cup A$ is consistent
- $\Gamma \not\models \Delta$
- $\Gamma \cup A \models \Delta$

Example (cont.)

Given $\mathcal{E} = \{wet_road, wet_grass\}, \Phi = \{rain, sun, irrigation, hot_day\}, and a theory <math>\Gamma$:

$$rain \rightarrow wet_road$$

 $rain \rightarrow wet_grass$
 $sun \leftrightarrow \neg rain$
 $irrigation \rightarrow wet_grass$
 $sun \land hot_day \rightarrow irrigation$

What are all possible explanations of $\Delta = \{wet_grass\}$?

Example (cont.)

Given $\mathcal{E} = \{wet_road, wet_grass\}, \Phi = \{rain, sun, irrigation, hot_day\}, and a theory <math>\Gamma$:

$$\mathsf{rain} o \mathsf{wet_road}$$

 $\mathsf{rain} o \mathsf{wet_grass}$
 $\mathsf{sun} \leftrightarrow \neg\mathsf{rain}$
 $\mathsf{irrigation} \to \mathsf{wet_grass}$
 $\mathsf{sun} \land \mathsf{hot_day} \to \mathsf{irrigation}$

What are all possible explanations of $\Delta = \{wet_grass\}$?

$$A_{1} = \{rain\}$$

$$A_{2} = \{irrigation\}$$

$$A_{3} = \{sun, hot_day\}$$

$$A_{4} = \{sun, irigation\}$$

$$A_{5} = \{sun, hot_day, irigation\}$$

Example (cont.)

Given $\mathcal{E} = \{wet_road, wet_grass\}, \Phi = \{rain, sun, irrigation, hot_day\}, and a theory <math>\Gamma$:

$$rain
ightarrow wet_road rain
ightarrow wet_grass sun \leftrightarrow \neg rain irrigation
ightarrow wet_grass sun \wedge hot_day
ightarrow irrigation$$

What are all possible explanations of $\Delta = \{wet_grass\}$?

$$A_{1} = \{rain\}$$

$$A_{2} = \{irrigation\}$$

$$A_{3} = \{sun, hot_day\}$$

$$A_{4} = \{sun, irigation\}$$

$$A_{5} = \{sun, hot_day, irigation\}$$

Not all explanations are equally preferred. A_2 and A_5 can be deduced from A_3 using Γ . We say that A_3 is stronger then A_2 and A_5 .

Definition

Given Γ , $\Delta \subseteq \mathcal{E}$, and $A, A' \subseteq \Phi$ s.t. $A \neq A'$. We say that the explanation A' is

- stronger than A w.r.t. Γ if $\Gamma \cup A' \models A$ and $\Gamma \cup A \not\models A'$
- independent w.r.t. Γ if no stronger explanation Γ exists.

Explanations A_1, A_3, A_4 are all independent, still A_4 can be seen as less preferred because it has a proper subset (A_2) which is an explanation too.

Explanations A_1, A_3, A_4 are all independent, still A_4 can be seen as less preferred because it has a proper subset (A_2) which is an explanation too.

Definition

Given Γ , $\Delta \subseteq \mathcal{E}$ we say that an explanation $A \subseteq \Phi$ of Δ w.r.t. Γ is minimal if there is no $A' \subsetneq A$ that is also an explanation of Δ w.r.t. Γ .

Computing explanations

A more abstract look at the abduction problem:

Definition (Abduction Problem)

An abduction problem is a quadruple $\langle \Delta, \Phi, e, < \rangle$ s.t.

- Δ is a set of observations (to be explained)
- Φ is a set of hypotheses (possible explanations)
- $e:2^{\Phi} \rightarrow 2^{\Delta}$ is an explanation function
- < $\subseteq 2^\Phi \times 2^\Phi,$ a plausibility oder on possible explanations is a partial order.

Computing explanations

A more abstract look at the abduction problem:

Definition (Abduction Problem)

An abduction problem is a quadruple $\langle \Delta, \Phi, e, < \rangle$ s.t.

- Δ is a set of observations (to be explained)
- Φ is a set of hypotheses (possible explanations)
- $e:2^{\Phi} \rightarrow 2^{\Delta}$ is an explanation function
- < $\subseteq 2^\Phi \times 2^\Phi,$ a plausibility oder on possible explanations is a partial order.

Note: The explanation functions e stands for the deduction w.r.t. some background theory Γ : if $e(H) = D \subseteq \Delta$ in means that the set of hypotheses H explains the set of observations D.

The plausibility order stands for preference on hypotheses. We always prefer the more plausible hypothesis.

We can easily compute some explanation if the abduction problem is independent:

Definition (Independent Abduction Problem)

An abduction problem $\langle \Delta, \Phi, e, < \rangle$ is independent if

$$(\forall H \subseteq \Phi) \ e(H) = \bigcup_{h \in H} e(h)$$

If an explanation of an independent abduction problem $\langle \Delta, \Phi, e, < \rangle$ exists, the following greedy algorithm computes some explanation:

- () if $e(\Phi)
 e \Delta$ return "No explanation" and terminate
- 2 H := Φ
 3 for all h ∈ Φ do
 3 if e(H \ {h}) = Δ then H := H \ {h}
 3 return H

Definition (Ordered Abduction Problem)

An abduction problem $\langle \Delta, \Phi, e, < \rangle$ is ordered if if for all $h, h' \in \Phi$ s.t. $h \neq h'$ we have either h < h' or h' < h.

Definition (Best explanations)

Given an abduction problem $\langle \Delta, \Phi, e, < \rangle$, an explanation $H \subseteq \Phi$ if Δ is best if there is no explanation $H' \subseteq \Phi$ s.t. H < H'.

Definition (Ordered Abduction Problem)

An abduction problem $\langle \Delta, \Phi, e, < \rangle$ is ordered if if for all $h, h' \in \Phi$ s.t. $h \neq h'$ we have either h < h' or h' < h.

Definition (Best explanations)

Given an abduction problem $\langle \Delta, \Phi, e, < \rangle$, an explanation $H \subseteq \Phi$ if Δ is best if there is no explanation $H' \subseteq \Phi$ s.t. H < H'.

Note that more than one best explanation is possible as < is a partial order.

If an explanation of an ordered independent abduction problem $\langle \Delta, \Phi, e, < \rangle$ exists, the following greedy algorithm computes some best explanation:

- () if $e(\Phi)
 e \Delta$ return "No explanation" and terminate
- $\bullet H := \Phi$
- if e(H \ {h}) = ∆ then H := H \ {h}
- 🕘 return H

References:

• Šefránek, J.:Inteligencia ako výpočet. IRIS, 2000.