Lecture 6: Prolog 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

30 Oct 2012

 \blacksquare

Example

Logic Program:

$$
\begin{array}{lcl} \mathit{father}(\mathit{abraham}, \mathit{isaac}) &\leftarrow\\ \mathit{mother}(\mathit{sarah}, \mathit{isaac}) &\leftarrow\\ \mathit{father}(\mathit{isaac}, \mathit{jacob}) &\leftarrow\\ \mathit{parent}(X, Y) &\leftarrow\mathit{father}(X, Y)\\ \mathit{parent}(X, Y) &\leftarrow\mathit{mother}(X, Y)\\ \mathit{grandparent}(X, Z) &\leftarrow\mathit{parent}(X, Y), \mathit{parent}(Y, Z)\\ \mathit{ancestor}(X, Y) &\leftarrow\mathit{parent}(X, Y)\\ \mathit{ancestor}(X, Z) &\leftarrow\mathit{parent}(X, Y), \mathit{ancestor}(Y, Z) \end{array}
$$

Query:

 $(\exists X)(\exists Y)$ ancestor (X, Y) ?

Answer:

Yes for
$$
X = abraham
$$
, $Y = isaac$; $X = sarah$, $Y = isaac$; $X = abraham$, $Y = jacob$.

 \leftarrow

Ε

∍ $\,$

∍

 \sim × D. к

4日)

K 伊 ▶ → 手

 \sim э $\,$ ×.

Ε

SLD-resolution \equiv Linear resolution with Selection function for Definite clauses.

Definition (Resolvent)

Let G be a definite goal $A_1 \wedge \cdots \wedge A_{k-1} \wedge A_k \wedge A_{k+1} \wedge \cdots \wedge A_m$ A_k be a selected atom, and r be a definite rule $B_0 \leftarrow B_1 \wedge \cdots \wedge B_n$. We say that a definite goal G' is a resolvent derived from G and r using θ if θ is the most general unifier of A_k and B_0 and G' has the form $\leftarrow (A_1 \wedge \cdots \wedge A_{k-1} \wedge B_1 \wedge \cdots \wedge B_n \wedge A_{k+1} \wedge \cdots \wedge A_m)\theta$.

Definition (SLD-derivation)

Let P be a definite logic program and G be a definite goal. An SLD-derivation of $P \cup \{G\}$ is a (posibly infinite) sequence of goals $G = G_0, \ldots, G_i, \ldots$, where each G_{i+1} is a resolvent obtained from G_i and a rule r_{i+1} from P using θ_{i+1} .

Definition (Successful, Failed, and Infinite Derivation)

A successful derivation ends in empty goal \leftarrow . A failed derivation ends in non-empty goal with the property that all atoms does not unify with the head of any rule. An infinite derivation is an infinite sequence of goals.

Definition (SLD-Tree)

Let P be a definite logic program and G be a definite goal. An SLD-tree for $P \cup \{G\}$ is a minimal tree satisfying the following:

- Each node of the tree is a (possibly empty) definite goal
- The root is G
- If G' is a node of the tree and G'' is a resolvent derived from G' , then G' has a child G''

Standard Prolog

- selects the first literal in the goal
- chooses rules for unification in order as they appear in the logic program

つくい

uses depth-first search strategy

Definition (Correct Answer)

Let P be a definite logic program and G be a definite goal. An answer for $P \cup \{G\}$ is a substitution for variables in G. An answer θ for $P \cup \{G\}$ is correct iff $P \models (A_1 \land \cdots \land A_n)\theta$ where $G = \leftarrow A_1 \wedge \cdots \wedge A_n$

Definition (Computed Answer)

Let G_0, \ldots, G_n be a successful derivation using $\theta_1, \ldots, \theta_n$. Then $\theta_1 \dots \theta_n$ restricted to the variables of G is the computed answer.

Theorem (Soundness)

Let P be a definite logic program and G be a definite goal. Every computed answer for $P \cup \{G\}$ is a correct answer for $P \cup \{G\}$.

Theorem (Completeness)

Let P be a definite logic program and G be a definite goal. For every correct answer θ for $P \cup \{G\}$ there exists a computed answer σ for $P \cup \{G\}$ and a substitution γ such that $\theta = \sigma \gamma$.

Fact (Termination)

SLD-resolution may not terminate.

つくへ

SLDNF-Resolution

SLD-resolution augmented by the negation as failure rule.

Definition (Resolvent)

Let G be a normal goal $L_1 \wedge \cdots \wedge L_{k-1} \wedge L_k \wedge L_{k+1} \wedge \cdots \wedge L_m$, L_k be a selected atom A, and r be a normal rule $B \leftarrow M_1 \wedge \cdots \wedge M_n$. We say that a normal goal G' is a <mark>resolvent</mark> derived from G and r using θ if θ is the most general unifier of A and B and G' has the form $\leftarrow (L_1 \wedge \cdots \wedge L_{k-1} \wedge M_1 \wedge \cdots \wedge M_n \wedge L_{k+1} \wedge \cdots \wedge L_m)\theta.$

Definition (Negation as Failure Rule)

Let G be a normal goal $L_1 \wedge \cdots \wedge L_{k-1} \wedge L_k \wedge L_{k+1} \wedge \cdots \wedge L_m$ and L_k be a selected negated atom $\sim A$. We say that a normal goal G' is obtained from G using negation as failure rule if $P \cup \{\leftarrow A\}$ has finitely failed SLDNF-tree and G' has the form \leftarrow L₁ $\wedge \cdots \wedge$ L_{k-1} \wedge L_{k+1} $\wedge \cdots \wedge$ L_m.

メロメ メ母メ メミメ メミメー

э

Definition (SLDNF-Derivation)

Let P be a normal logic program and G be a normal goal. An SLDNF-derivation of $P \cup \{G\}$ is a (possibly infinite) sequence of goals $G=G_0,\ldots,G_i,\ldots$ where each G_{i+1}

- is derived from G_i and a rule r_{i+1} from P using θ_{i+1} , or
- \bullet is obtained from G_i using negation as failure rule on selected literal ∼ A. In such case, $r_{i+1} = \leftarrow A$ and θ_{i+1} is identity.

Definition (Successful, Failed, and Infinite Derivation)

A successful derivation ends in empty goal \leftarrow . A failed derivation ends in non-empty goal with the property that the selected literal is

- an atom which do not unify with the head of any rule, or
- a negated atom which do not have finitely failed SLDNF-tree.

 299

An infinite derivation is an infinite sequence of goals.

Definition (SLDNF-Tree)

Let P be a normal logic program and G be a normal goal. An SLDNF-tree for $P \cup \{G\}$ is a minimal tree satisfying the following:

- Each node of the tree is a (possibly empty) normal goal
- The root is G
- If G' is a node of the tree and G'' is a resolvent derived from G' , then G' has a child G''
- If G' is a node of the tree and G'' is obtained from G' using negation as failure rule, then G' has a child G''

Definition (Finitely Failed SLDNF-Tree)

A finitely failed SLDNF-tree is finite and has only failed branches.

Please note, that SLDNF-tree is defined in terms of SLDNF-derivation, and SLDNF-derivation is defined in terms of SLDNF-tree. Such cyclic definitions are not correct. Proper definitions are much more complex, although they capture the same idea. They can be found in:

Lloyd, J. W. (1987). Foundations of Logic Programming. Springer.

Definition (Correct Answer)

Let P be a normal logic program and G be a normal goal. An answer for $P \cup \{G\}$ is a substitution for variables in G. An answer θ for $P \cup \{G\}$ is correct iff $Comp(P) \models (L_1 \land \cdots \land L_n)\theta$ where $G = \leftarrow L_1 \wedge \cdots \wedge L_n$

Definition (Computed Answer)

Let G_0, \ldots, G_n be a successful derivation using $\theta_1, \ldots, \theta_n$. Then $\theta_1 \dots \theta_n$ restricted to the variables of G is the computed answer.

Theorem (Soundness)

Let P be a normal logic program and G be a normal goal. Every computed answer for $P \cup \{G\}$ is a correct answer for $P \cup \{G\}$.

Fact (Termination)

SLDNF-resolution may not terminate.

Fact (Completeness)

SLDNF-resolution is not complete. Even if it terminates, it may not compute all answers (see floundering).

つくへ

```
man(dilbert). man(bill).
husband(bill).
single(X) := man(X), not(husband(X)).? single(X).
X = \text{dilbert}; No
man(dilbert). man(bill).
husband(bill).
single(X) :- not(hushand(X)), man(X).? single(X).
No
```
 2990

おく 国家

```
reverse([], []).
reverse([X|Xs], Zs) :- reverse(Xs, Ys),
                        append(Ys, [X], Zs).
? reverse(Xs, [3,2,1]).
Xs = [1, 2, 3];...
reverse([X|Xs], Zs) :- reverse(Xs, Ys),
                        append(Ys, [X], Zs).
reverse([], []).
? reverse(Xs, [3,2,1]).
...
```
 Ω

```
reverse([], []).
reverse([X|Xs], Zs) :- reverse(Xs, Ys),
                        append(Ys, [X], Zs).
? reverse([1, 2, 2], Zs).
Zs = [3, 2, 1];
No
reverse([], []).
reverse([X|Xs], Zs) :- append(Ys, [X], Zs),
                        reverse(Xs, Ys).
? reverse([1,2,3], Zs).
Zs = [3, 2, 1]:
...
```