
1

Computer Graphics WS03/04 – Scan Conversion

Computer Graphics

- Scan Conversion -

Marcus Magnor
Philipp Slusallek

Computer Graphics WS03/04 – Scan Conversion

Overview
• So far:

– Clipping
– Rasterization

• Today:
– Antialiased lines
– Scan conversion

• Edge coherence
• Span coherence

– Interpolation

• Next time:
– Cg

1

Computer Graphics WS03/04 – Scan Conversion

Computer Graphics

- Scan Conversion -

Marcus Magnor
Philipp Slusallek

Computer Graphics WS03/04 – Scan Conversion

Overview
• So far:

– Clipping
– Rasterization

• Today:
– Antialiased lines
– Scan conversion

• Edge coherence
• Span coherence

– Interpolation

• Next time:
– Cg

2

Computer Graphics WS03/04 – Scan Conversion

Antialiased Line Drawing
• Aliasing effects

– Moire patterns
– Staircase, jaggies

• Trivial solution: Increasing resolution
– 4x memory, bandwidth, rendering time
– Reduces aliasing, doesn’t eliminate

Computer Graphics WS03/04 – Scan Conversion

Unweighted Area Sampling
• Line has finite area

– Draw rectangle

• Intensity distribution
– According to

percentage covered
– Only intersected

pixels affected

• Unweighted sampling
– Equal areas

contribute equally
– Entire pixel area of equal

weight
– distance pixel center - line

no criterion

2

Computer Graphics WS03/04 – Scan Conversion

Antialiased Line Drawing
• Aliasing effects

– Moire patterns
– Staircase, jaggies

• Trivial solution: Increasing resolution
– 4x memory, bandwidth, rendering time
– Reduces aliasing, doesn’t eliminate

Computer Graphics WS03/04 – Scan Conversion

Unweighted Area Sampling
• Line has finite area

– Draw rectangle

• Intensity distribution
– According to

percentage covered
– Only intersected

pixels affected

• Unweighted sampling
– Equal areas

contribute equally
– Entire pixel area of equal

weight
– distance pixel center - line

no criterion

3

Computer Graphics WS03/04 – Scan Conversion

Weighted Area Sampling
• Equal areas

contribute unequally
– Area close to pixel center

has greater influence

• Weighting function
– Centered on each pixel
– Integral = 1
– Larger than pixel diameter
– Weighted intersection area

with line rectangle: intensity

• Unweighted Sampling
– Box filter

• Weighted Sampling
– Cone filter

Computer Graphics WS03/04 – Scan Conversion

Cone-filtered Line Drawing
• Gupta-Sproull algorithm
• Need to know smallest distance

from line to pixel center D
– Weighted intersected line area:

table lookup W(D,t)
• t: line thickness

• Bresenham
– Decision variable d to find mid-line pixel
– Intensity for mid-pixel and both

vertically neighboring pixels ?
• Distance pixels’ center – line D

3

Computer Graphics WS03/04 – Scan Conversion

Weighted Area Sampling
• Equal areas

contribute unequally
– Area close to pixel center

has greater influence

• Weighting function
– Centered on each pixel
– Integral = 1
– Larger than pixel diameter
– Weighted intersection area

with line rectangle: intensity

• Unweighted Sampling
– Box filter

• Weighted Sampling
– Cone filter

Computer Graphics WS03/04 – Scan Conversion

Cone-filtered Line Drawing
• Gupta-Sproull algorithm
• Need to know smallest distance

from line to pixel center D
– Weighted intersected line area:

table lookup W(D,t)
• t: line thickness

• Bresenham
– Decision variable d to find mid-line pixel
– Intensity for mid-pixel and both

vertically neighboring pixels ?
• Distance pixels’ center – line D

4

Computer Graphics WS03/04 – Scan Conversion

Antialiased Bresenham Lines
• Distance to line center

• In incremental form

22
cos

dydx

vdx
vD

+
== φ

222

1

yx

d
Dclosest

∆+∆

±
=

()
221

2

12

yx

d
D

∆+∆

±±
=±

Computer Graphics WS03/04 – Scan Conversion

We are here …

4

Computer Graphics WS03/04 – Scan Conversion

Antialiased Bresenham Lines
• Distance to line center

• In incremental form

22
cos

dydx

vdx
vD

+
== φ

222

1

yx

d
Dclosest

∆+∆

±
=

()
221

2

12

yx

d
D

∆+∆

±±
=±

Computer Graphics WS03/04 – Scan Conversion

We are here …

5

Computer Graphics WS03/04 – Scan Conversion

Scene-to-Screen Conversion

• Scene composed of primitives
• Rendering:

– Determine 2D projection coordinates of each primitive
• Per-vertex transformations

– Find screen pixels covered by primitive
• Clipping
• rasterization

– Handle occlusions between primitives
• Hidden surface removal

– Calculate pixel colors from visible primitives
• shading

Computer Graphics WS03/04 – Scan Conversion

Triangle Filling

Raster3_box(vertex v[3])
{

int x, y;
bbox b;
bound3(v, &b);
for (y= b.ymin; y < b.ymax; y++)

for (x= b.xmin; x < b.xmax; x++)
if (inside(v, x, y))
fragment(x,y);

}

•• BruteBrute--Force algorithmForce algorithm

5

Computer Graphics WS03/04 – Scan Conversion

Scene-to-Screen Conversion

• Scene composed of primitives
• Rendering:

– Determine 2D projection coordinates of each primitive
• Per-vertex transformations

– Find screen pixels covered by primitive
• Clipping
• rasterization

– Handle occlusions between primitives
• Hidden surface removal

– Calculate pixel colors from visible primitives
• shading

Computer Graphics WS03/04 – Scan Conversion

Triangle Filling

Raster3_box(vertex v[3])
{

int x, y;
bbox b;
bound3(v, &b);
for (y= b.ymin; y < b.ymax; y++)

for (x= b.xmin; x < b.xmax; x++)
if (inside(v, x, y))
fragment(x,y);

}

•• BruteBrute--Force algorithmForce algorithm

6

Computer Graphics WS03/04 – Scan Conversion

Inside-Outside Test for Triangles
• Approach

– Implicit edge functions
to describe the triangle
Fi(x,y)= ax+by+c

– Point inside triangle,
if every Fi(x,y) <= 0

– Incremental evaluation
of the linear function F
by adding a or b

Computer Graphics WS03/04 – Scan Conversion

Incremental Rasterization Process

Raster3_incr(vertex v[3])
{
edge l0, l1, l2;
value d0, d1, d2;
bbox b;
bound3(v, &b);
mkedge(v[0],v[1],&l2);
mkedge(v[1],v[2],&l0);
mkedge(v[2],v[0],&l1);

d0 = l0.a * b.xmin + l0.b * b.ymin + l0.c;
d1 = l1.a * b.xmin + l1.b * b.ymin + l1.c;
d2 = l2.a * b.xmin + l2.b * b.ymin + l2.c;

for(y=b.ymin; y<b.ymax, y++) {
for(x=b.xmin; x<b.xmax, x++) {
if(d0<=0 && d1<=0 && d2<=0) fragment(x,y);
d0 += l0.a; d1 += l1.a; d2 += l2.a;

}
d0 += l0.a * (b.xmin - b.xmax) + l0.b; . . . }

}

v0

v1v2
l0

l1
l2

6

Computer Graphics WS03/04 – Scan Conversion

Inside-Outside Test for Triangles
• Approach

– Implicit edge functions
to describe the triangle
Fi(x,y)= ax+by+c

– Point inside triangle,
if every Fi(x,y) <= 0

– Incremental evaluation
of the linear function F
by adding a or b

Computer Graphics WS03/04 – Scan Conversion

Incremental Rasterization Process

Raster3_incr(vertex v[3])
{
edge l0, l1, l2;
value d0, d1, d2;
bbox b;
bound3(v, &b);
mkedge(v[0],v[1],&l2);
mkedge(v[1],v[2],&l0);
mkedge(v[2],v[0],&l1);

d0 = l0.a * b.xmin + l0.b * b.ymin + l0.c;
d1 = l1.a * b.xmin + l1.b * b.ymin + l1.c;
d2 = l2.a * b.xmin + l2.b * b.ymin + l2.c;

for(y=b.ymin; y<b.ymax, y++) {
for(x=b.xmin; x<b.xmax, x++) {
if(d0<=0 && d1<=0 && d2<=0) fragment(x,y);
d0 += l0.a; d1 += l1.a; d2 += l2.a;

}
d0 += l0.a * (b.xmin - b.xmax) + l0.b; . . . }

}

v0

v1v2
l0

l1
l2

7

Computer Graphics WS03/04 – Scan Conversion

Coherence
• Adjacent pixels generally exhibit the same properties

• If a given pixel is inside a polygon, then immediately
adjacent pixels are also likely to be inside the polygon.
The converse is also true.

• We say that the visibility of adjacent pixels differs only if
an edge (or boundary) of the polygon passes between
them - a relatively un-common event.

⇒ Exploit pixel coherence
for efficient, fast polygon rendering

Computer Graphics WS03/04 – Scan Conversion

Rasterization

• 3D screen space
• Scan line: horizontal line of screen
• Span: extension of polygonal edge on scan line

– From xstart to xend

7

Computer Graphics WS03/04 – Scan Conversion

Coherence
• Adjacent pixels generally exhibit the same properties

• If a given pixel is inside a polygon, then immediately
adjacent pixels are also likely to be inside the polygon.
The converse is also true.

• We say that the visibility of adjacent pixels differs only if
an edge (or boundary) of the polygon passes between
them - a relatively un-common event.

⇒ Exploit pixel coherence
for efficient, fast polygon rendering

Computer Graphics WS03/04 – Scan Conversion

Rasterization

• 3D screen space
• Scan line: horizontal line of screen
• Span: extension of polygonal edge on scan line

– From xstart to xend

8

Computer Graphics WS03/04 – Scan Conversion

Pixel-Level Processes
• Rasterization, hidden surface removal, shading

– Carried out in inner loop of renderer
• Regard one polygon at a time
• Regard one scan line at a time
• Span: intersection of scan line with polygon
• Conversion into run of consecutive pixels: exploits coherence

• Two-dimensional linear interpolation processes
For each scan line, find span
– Limits / x-coordinates: rasterization

• Interpolated from 2D edge vertex positions in screen space
For each span’s limits, find
– Scene depth: hidden surface removal

• Interpolated from edge vertices’ z-coordinate in screen space
– Color/normal: shading

• Interpolated from edge vertices’ color/normal
– Interpolate depth/color between span limits

Computer Graphics WS03/04 – Scan Conversion

Pixel-Level Processes
• Innermost rendering loop
for each polygon
{

perform geometric transformations into screen space
for each scan line within the polygon
{

find span by interpolation of edge vertex
coordinates
find span limits’ depth & color/normal
rasterize span
for each pixel within the span
{

interpolate depth & color/normal from span
limits
perform hidden surface removal
shade pixel

}
}

}

8

Computer Graphics WS03/04 – Scan Conversion

Pixel-Level Processes
• Rasterization, hidden surface removal, shading

– Carried out in inner loop of renderer
• Regard one polygon at a time
• Regard one scan line at a time
• Span: intersection of scan line with polygon
• Conversion into run of consecutive pixels: exploits coherence

• Two-dimensional linear interpolation processes
For each scan line, find span
– Limits / x-coordinates: rasterization

• Interpolated from 2D edge vertex positions in screen space
For each span’s limits, find
– Scene depth: hidden surface removal

• Interpolated from edge vertices’ z-coordinate in screen space
– Color/normal: shading

• Interpolated from edge vertices’ color/normal
– Interpolate depth/color between span limits

Computer Graphics WS03/04 – Scan Conversion

Pixel-Level Processes
• Innermost rendering loop
for each polygon
{

perform geometric transformations into screen space
for each scan line within the polygon
{

find span by interpolation of edge vertex
coordinates
find span limits’ depth & color/normal
rasterize span
for each pixel within the span
{

interpolate depth & color/normal from span
limits
perform hidden surface removal
shade pixel

}
}

}

9

Computer Graphics WS03/04 – Scan Conversion

Rasterization

• Definition
– Given a primitive, specify which pixels on a raster display are

covered by this primitive
– Extension: specify fraction of partially covered pixels

• Antialiasing

• Questions
– Where exactly does a span start/end ?
– Where within the pixel should the sample point be ?
– Round screen coordinates to integer ?

Store with fractional precision ?

• Problems
– Holes between polygons
– Overlapping polygons (problems with transparency)
– Discontinuities in textured surfaces
– Inaccuracies during anti-aliasing

Computer Graphics WS03/04 – Scan Conversion

Errors in Rasterization
Screen coordinates
• Integer rasterization

– Distorts shape
– Correct supersampling not possible
– Animation: “wobble”
– Nearly vertical edge: step discontinuity

• Shift in texture mapping
⇒ High precision necessary

Sample point position
• Pixel center

– Unnecessary fractional-pel offset

• Pixel corner
– Maximal ½-pixel displacement
– Doesn’t matter as long as consistent

9

Computer Graphics WS03/04 – Scan Conversion

Rasterization

• Definition
– Given a primitive, specify which pixels on a raster display are

covered by this primitive
– Extension: specify fraction of partially covered pixels

• Antialiasing

• Questions
– Where exactly does a span start/end ?
– Where within the pixel should the sample point be ?
– Round screen coordinates to integer ?

Store with fractional precision ?

• Problems
– Holes between polygons
– Overlapping polygons (problems with transparency)
– Discontinuities in textured surfaces
– Inaccuracies during anti-aliasing

Computer Graphics WS03/04 – Scan Conversion

Errors in Rasterization
Screen coordinates
• Integer rasterization

– Distorts shape
– Correct supersampling not possible
– Animation: “wobble”
– Nearly vertical edge: step discontinuity

• Shift in texture mapping
⇒ High precision necessary

Sample point position
• Pixel center

– Unnecessary fractional-pel offset

• Pixel corner
– Maximal ½-pixel displacement
– Doesn’t matter as long as consistent

10

Computer Graphics WS03/04 – Scan Conversion

Polygon Edges
• Bresenham: Closest pixels along edge lines

– Inside or outside polygon
– Overdrawing from neighboring polygons, flickering

• Combine with knowledge about per-scanline span
– Inside-outside: Odd-parity rule

Computer Graphics WS03/04 – Scan Conversion

Span Boundary Rounding

• Real numbers
– Round xstart up
– Round xend down
– If fractional part of xend is 0, subtract 1

• Integer arithmetic (4-bit example)
– Round xstart up to next multiple of 16
– Round xend down to next multiple of 16
– If xend is multiple of 16, subtract 16 from it

• No holes between spans
• No overlap of span
• Generated pixels are always within span bounds

10

Computer Graphics WS03/04 – Scan Conversion

Polygon Edges
• Bresenham: Closest pixels along edge lines

– Inside or outside polygon
– Overdrawing from neighboring polygons, flickering

• Combine with knowledge about per-scanline span
– Inside-outside: Odd-parity rule

Computer Graphics WS03/04 – Scan Conversion

Span Boundary Rounding

• Real numbers
– Round xstart up
– Round xend down
– If fractional part of xend is 0, subtract 1

• Integer arithmetic (4-bit example)
– Round xstart up to next multiple of 16
– Round xend down to next multiple of 16
– If xend is multiple of 16, subtract 16 from it

• No holes between spans
• No overlap of span
• Generated pixels are always within span bounds

11

Computer Graphics WS03/04 – Scan Conversion

Span Interpolation
• Find xstart and xend of span

– Linear interpolation between polygon edge endpoints
• Floating point accuracy

– Modified Bresenham algorithm
• Integer arithmetic

• Determine depth for each pixel
– Find depth at span boundaries

• Linear interpolation between polygon edge endpoints
(z-coordinates of vertex positions in 3D screen space)

– Linear interpolation between span boundaries

• Determine color for each pixel
– Gouraud: Find color at span boundaries
– Phong: Find normal direction at span boundaries

• Linear interpolation between polygon edge endpoints
– Linear interpolation between span boundaries

Computer Graphics WS03/04 – Scan Conversion

Efficient Scan Conversion
• In which order to draw polygons/scanlines ?

– One polygon after the other
• Frequent scanline jumps

– One scanline after the other
• considers pixels incrementally
• Exploits pixel coherence

– Acceleration data structures
• E.g., triangle strips

• Brute force: intersect all the edges with each scanline
– Find ymin and ymax of each edge
– Intersect edge only when it crosses the scanline
– Calculate the intersection of the edge

with the first scan line it intersects
– calculate dx/dy
– for each additional scanline,

calculate the new intersection as x = x + dx/dy

11

Computer Graphics WS03/04 – Scan Conversion

Span Interpolation
• Find xstart and xend of span

– Linear interpolation between polygon edge endpoints
• Floating point accuracy

– Modified Bresenham algorithm
• Integer arithmetic

• Determine depth for each pixel
– Find depth at span boundaries

• Linear interpolation between polygon edge endpoints
(z-coordinates of vertex positions in 3D screen space)

– Linear interpolation between span boundaries

• Determine color for each pixel
– Gouraud: Find color at span boundaries
– Phong: Find normal direction at span boundaries

• Linear interpolation between polygon edge endpoints
– Linear interpolation between span boundaries

Computer Graphics WS03/04 – Scan Conversion

Efficient Scan Conversion
• In which order to draw polygons/scanlines ?

– One polygon after the other
• Frequent scanline jumps

– One scanline after the other
• considers pixels incrementally
• Exploits pixel coherence

– Acceleration data structures
• E.g., triangle strips

• Brute force: intersect all the edges with each scanline
– Find ymin and ymax of each edge
– Intersect edge only when it crosses the scanline
– Calculate the intersection of the edge

with the first scan line it intersects
– calculate dx/dy
– for each additional scanline,

calculate the new intersection as x = x + dx/dy

12

Computer Graphics WS03/04 – Scan Conversion

Edge Coherence Property

"Many of the edges intersected by scan line (i)
will also be intersected by scan line (i + 1)."

Using the edge coherence property we can save time in
computing the intersection of an edge with scan line (i+1) if
we know:

• the edge's intersection with scan line (i)

• the slope of the line segment m

Computer Graphics WS03/04 – Scan Conversion

Moving from Scan-Line to Scan-Line

Scan Line (i+1)

Scan Line (i)

X (i + 1) = X (i) + (1/m)

where: m = dy / dx

dy = 1 ==> dx = 1/m

12

Computer Graphics WS03/04 – Scan Conversion

Edge Coherence Property

"Many of the edges intersected by scan line (i)
will also be intersected by scan line (i + 1)."

Using the edge coherence property we can save time in
computing the intersection of an edge with scan line (i+1) if
we know:

• the edge's intersection with scan line (i)

• the slope of the line segment m

Computer Graphics WS03/04 – Scan Conversion

Moving from Scan-Line to Scan-Line

Scan Line (i+1)

Scan Line (i)

X (i + 1) = X (i) + (1/m)

where: m = dy / dx

dy = 1 ==> dx = 1/m

13

Computer Graphics WS03/04 – Scan Conversion

Edge Table
• The Edge Table consists of a series of entries
• Each entry is a linked list

• All edges are sorted by their ymin coordinates
• keep a separate bucket for each scanline
• within each bucket, edges are sorted by increasing x

of the ymin endpoint
• A scan line will have a non-empty linked list entry

ONLY if it corresponds to the lower y-coordinate of a
line segment

Computer Graphics WS03/04 – Scan Conversion

Edge Table

13

Computer Graphics WS03/04 – Scan Conversion

Edge Table
• The Edge Table consists of a series of entries
• Each entry is a linked list

• All edges are sorted by their ymin coordinates
• keep a separate bucket for each scanline
• within each bucket, edges are sorted by increasing x

of the ymin endpoint
• A scan line will have a non-empty linked list entry

ONLY if it corresponds to the lower y-coordinate of a
line segment

Computer Graphics WS03/04 – Scan Conversion

Edge Table

14

Computer Graphics WS03/04 – Scan Conversion

Entry in the Linked List
• An entry in the linked list contains (if an entry is

needed):
– The larger y-coordinate of the edge

(i.e., the maximum scan line)
– The x-coordinate of the lower (bottom) end point (Xmin)

(i.e., the X value for Ymin)
– The x increment used in stepping from one scan line to

the next i.e. 1/m
– If necessary, a pointer to another entry in the linked list of

this scan line

• Incremental algorithm
– Utilization of coherence

• along the edges
• on scanlines
• „sweepline-algorithm“

Computer Graphics WS03/04 – Scan Conversion

Use of Active Edge List
• Having created an edge table, we can scan (line by line)

using only those edges revelant for that scan line.
• These are held in an active edge list which is created

and maintained from the edge table .
• Moving from scan line to scan line, we calculate new x

intersections using the equation:

x(i+1) = x(i) + 1/m

• Any new edges intersected by this next scan line are
introduced (from the edge table) into the active edge list
and edges not intersected by this next scan line are
removed.

• This may involve sorting.

14

Computer Graphics WS03/04 – Scan Conversion

Entry in the Linked List
• An entry in the linked list contains (if an entry is

needed):
– The larger y-coordinate of the edge

(i.e., the maximum scan line)
– The x-coordinate of the lower (bottom) end point (Xmin)

(i.e., the X value for Ymin)
– The x increment used in stepping from one scan line to

the next i.e. 1/m
– If necessary, a pointer to another entry in the linked list of

this scan line

• Incremental algorithm
– Utilization of coherence

• along the edges
• on scanlines
• „sweepline-algorithm“

Computer Graphics WS03/04 – Scan Conversion

Use of Active Edge List
• Having created an edge table, we can scan (line by line)

using only those edges revelant for that scan line.
• These are held in an active edge list which is created

and maintained from the edge table .
• Moving from scan line to scan line, we calculate new x

intersections using the equation:

x(i+1) = x(i) + 1/m

• Any new edges intersected by this next scan line are
introduced (from the edge table) into the active edge list
and edges not intersected by this next scan line are
removed.

• This may involve sorting.

15

Computer Graphics WS03/04 – Scan Conversion

Active Edge List

• A list of edges active
for current scanline,
sorted in increasing x

• Active edge list at
– Y=8

– Y=9

Computer Graphics WS03/04 – Scan Conversion

Polygon Scan-Conversion Algorithm
Construct the Edge Table (ET);
Active Edge Table (AET) = null;
for y = Ymin to Ymax

Merge-sort ET[y] into AET by x value
Fill between pairs of x in AET
for each edge in AET

if edge.ymax = y
remove edge from AET

else
edge.x = edge.x + dx/dy

sort AET by x value

end scan_fill

15

Computer Graphics WS03/04 – Scan Conversion

Active Edge List

• A list of edges active
for current scanline,
sorted in increasing x

• Active edge list at
– Y=8

– Y=9

Computer Graphics WS03/04 – Scan Conversion

Polygon Scan-Conversion Algorithm
Construct the Edge Table (ET);
Active Edge Table (AET) = null;
for y = Ymin to Ymax

Merge-sort ET[y] into AET by x value
Fill between pairs of x in AET
for each edge in AET

if edge.ymax = y
remove edge from AET

else
edge.x = edge.x + dx/dy

sort AET by x value

end scan_fill

16

Computer Graphics WS03/04 – Scan Conversion

Scanline Algorithm
• For each scan line

– Update the Active -Edge-Table
• Linked-list of entries

– Link to edge-entries,
– x, horizontal increment of depth, color, etc

• Remove edges if their ymax is reached
• Insert new edges (from Edge-Table)

– Sorting
• Incremental update of x
• Sorting by X-coordinate of the intersection point with scanline

– Filling the gap between pairs of entries

Computer Graphics WS03/04 – Scan Conversion

Polygon Scan-Conversion
• Special cases

– Edge along a scanline
• (x+ε, y+ε), shadow test:

– draw the bottom edge
– skip the top edge

– Vertex on a scanline
• If edges sharing the vertex are located on the same side of

the scanline – properly handled
• If edges sharing the vertex are located on opposite sides of

the scanline – one edge (top) is shortened: ymin/ymax rule

scanlines

16

Computer Graphics WS03/04 – Scan Conversion

Scanline Algorithm
• For each scan line

– Update the Active -Edge-Table
• Linked-list of entries

– Link to edge-entries,
– x, horizontal increment of depth, color, etc

• Remove edges if their ymax is reached
• Insert new edges (from Edge-Table)

– Sorting
• Incremental update of x
• Sorting by X-coordinate of the intersection point with scanline

– Filling the gap between pairs of entries

Computer Graphics WS03/04 – Scan Conversion

Polygon Scan-Conversion
• Special cases

– Edge along a scanline
• (x+ε, y+ε), shadow test:

– draw the bottom edge
– skip the top edge

– Vertex on a scanline
• If edges sharing the vertex are located on the same side of

the scanline – properly handled
• If edges sharing the vertex are located on opposite sides of

the scanline – one edge (top) is shortened: ymin/ymax rule

scanlines

19

Computer Graphics WS03/04 – Scan Conversion

Wrap-Up
• Per-pixel processes

⇒ Exploit pixel coherence
– Rasterization
– Shading

• Scanline conversion
– Spans
– Linear interpolation
– Floating point accuracy
– Correct rounding

• Edge table
• Active edge list

Computer Graphics WS03/04 – Scan Conversion

Graphics Hardware
• Rasterization: convert primitives to fragments

– Primitive: point, line, polygon, …
– Fragment: transient data structure, e.g.

Short x,y;
Long depth;
Short r,g,b,a;

• Pixels exist in an array (framebuffer)
– Implicit x,y coordinates

• Fragments are routed to appropriate pixels
– Sorting operation

• Fundamental operations
– Fragment selection

• Identify pixels for which fragments are to be generated
– Parameter assignment

• Assign color, depth, … to each fragment

