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ABSTRACT

new approach for simulating deformable objects

handles point objects and does not need
connectivity information

does not require any pre-processing

unconditional stability of the dynamic simulation
make the approach particularly interesting for
games



INTRODUCTION:
WHAT WE NEED

o Efficiency

o Stability

o Controllability




INTRODUCTION:
CONTRIBUTIONS

pulling a deformed geometry towards a well-defined
goal

degree of details are varied using linear and
guadratic deformation modes

large variety of objects can be handled

stable under all circumstances and for all deformed
geometry configurations



MESHLESS ANIMATION

Newton’s second law of motion is basis for many
physically-based simulation techniqgues F =ma

to compute object locations, the accelerations and
velocities are numerically integrated over time

Implicit integration — stability / computationally
expensive

explicit integration - faster to compute / not so
stable



MESHLESS ANIMATION:
EXPLICIT NUMERICAL INTEGRATION

f==k(x(t)-1))

v(t+h)
m
x(t+h) = x(t)+hv(t+h),
=5 T
A= N




MESHLESS ANIMATION:
THE ALGORITHM

only need set of particles with masses m, and an
initial configuration X

without particle-particle interactions

each time step, each particle is pulled towards its
goal position g;



MESHLESS ANIMATION:
SHAPE MATCHING 1

two sets of points x° and x.

find the rotation matrix R and the translation vectors
t and t, which minimize

Y wi(R(x] —to) +t—x;)?
[

w; are weights of individual points



MESHLESS ANIMATION:
SHAPE MATCHING 2
.~ I P T I
A= (Z’”Iplqi )(2’7’1(11(11' ) = quAqq-
[ l
Ayq = RS

S - symmetric part
R - rotational part

Goal position:

s () 0
8 = R(X,- — Xcm) + Xcm



MESHLESS ANIMATION:
INTEGRATION

gi(f) —x;(1)
h
X;(t+h) = Xx;(t)+hvi(t+h)

vilt+h) = vit)+o + I fext(1)/m;

o = [0..1] - simulates stiffness

difference is the way the internal elastic forces are
treated



EXTENSIONS:
RIGID BODY DYNAMICS

a=1

points are moved to the goal positions g; exactly at
each time step

positions represent a rotated and translated version
of the initial shape



EXTENSIONS:
LINEAR DEFORMATIONS

o A— matrix of the best linear transformation to match
the actual shape in the least squares sense

og =pA+(1-P)R

o instead of using just R




EXTENSIONS:
QUADRATIC DEFORMATIONS

o quadratic transformation: g = [A Q M|q;

o optimal quadratic transformation:

A= (ZmipifliT )(zmiflifliT ) = ApgAyy
l [




EXTENSIONS:
CLUSTER BASED DEFORMATION

o extend the range of motion

o regularly subdivide the space around a given
surface mesh into overlapping cubical regions

gi (1) —xi(r)
h

AV =0




EXTENSIONS:
PLASTICITY




RESULTS

o test on PC Pentium 4, 3.2 GHz

o Cluster based deformation




RESULTS:

PERFORMANCE
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RESULTS:
COMPLEX SIMULATION SCENARIOS

o 384 objects, 2,448 clusters, 55,200 points

o quadratic shape matching take 0.008 and 0.096
milliseconds per frame




RESULTS:
INTERACTIVITY

8 clusters and 66 points,
6,460 + 2,000 faces




RESULTS:
STABILITY




THE END

Thank you for your attention
Please don’t be shy to ask any question



