Preference handling in logic programs under answer set semantics

Alexander Šimko

Departmetnt of Applied Informatics Comenius University, Bratislava

August 29, 2011

My interest

- logic programs under answer set semantics
- semantics for preference on rules

The way I see preference handling

- selective approach
- order in which rules are applied is already defined
- comparison of generating sets
- existence of a preferred answer set if a standard one exists

- with Ján Šefránek
- selective approach to preference handling
- selection as a form of argumentation
- rules (of a program) as a argumentation structures
- $\bullet\,$ preference on rules $\rightarrow\,$ attack on rules
- derivation rules to derive answer sets from argumentation structures
- derivation rules to derive attacks on argumentation structures

• attempt to simplify Warranted derivations

Features

- defined directly on generating sets
- direct definition of attack (no derivation rules)
- only preferences on blocking rules are considered

Main idea

Attacked generating set cannot generate preferred answer set

r_1 blocks r_2

- $r_1: a \leftarrow b$
- $r_2: c \leftarrow not a$

Attack on rules: r_1 attacks r_2

- r1 blocks r2
- r_1 is preferred over r_2

▲ 同 ▶ → 三 ▶

문 문 문

Attack on generating sets

 R_1 attacks R_2 iff there is $r_1 \in R_1$ and $r_2 \in R_2$ such that r_1 attacks r_2 .

Basic idea

Generating set being attacked cannot generate preferred answer set

- Principle III (there is a preferred answer set when a standard one exists)
- cyclic attacks

Effective attack

Only effective attack attacks generating set

Attacks from attacked generating set are ineffective.

In case of mutual attack of two generating sets, compare number of attacks. (compatibility with Warranted derivations)

Attacks of generating set with less attacks are ineffective.

Pros

- there is a preferred answer set whenever there is a standard answer set
- problematic examples from literature are handled correctly due to the Principle IV
- preference on non generating rules plays no role

Cons

Lack of intuition behind:

- definition of effective attack (technically) oriented to satisfy Principle III
- attack on rules why to only consider preference on blocking rules?

Accepting the natural order of rules in a logic program with preferences

Preference importance

- when considering two answer sets, find a "core" of the program that is responsible for multiple answer sets.
- preferences over "core" rules are more important
- answer sets can be computed in a interative manner with a branching points (splitting sequence theorem)

<i>r</i> ₁ :	$\textit{a} \gets \textit{not} \textit{ b}$
<i>r</i> ₂ :	$b \leftarrow \textit{not} a$
<i>r</i> ₃ :	$c \leftarrow a$
<i>r</i> ₄ :	$d \leftarrow b$

 r_1 is preferred over r_2 r_4 is preferred over r_3

$$\begin{array}{ll} A_1 = \{a,c\} & R_1 = \{r_1,r_3\} \\ A_2 = \{b,d\} & R_2 = \{r_2,r_4\} \end{array}$$

Preference importance

æ

≣ ।•

Im ▶ < 10</p>

Preference importance

æ

P.

What if there is no preference on rules in "core"?

Whether to use preferences from "top" seems to be domain specific – what preference really is

- $r_1: x \leftarrow$
- $r_2: y \leftarrow$
- r_3 : $a \leftarrow x$, not b
- $r_4: b \leftarrow y, not a$
- $r_5: c \leftarrow b$

 r_5 is preferred over r_3

- $\bullet\,$ preference relation on rules $\rightarrow\,$ preference relation on generating sets
- $\bullet\,$ preference relation on generatingsets $\rightarrow\,$ preference relation on answer sets
- select maximally preferred answer sets

r ₁ r ₂	$a_1 \leftarrow \text{not } a_3, \text{not } d_2 \\ d_1 \leftarrow \text{not } a_3, \text{not } d_2$
r ₃ r ₄	$a_2 \leftarrow \textit{not } a_1, \textit{not } d_3$ $d_2 \leftarrow \textit{not } a_1, \textit{not } d_3$
r ₅ r ₆	$a_3 \leftarrow \text{not } a_2, \text{not } d_1 \\ a_3 \leftarrow \text{not } a_2, \text{not } d_1$
r_1 is preferred over r_4 r_3 je preferred over r_5 r_6 je preferred over r_2	

э

→ ∢ ≣

Preference relation on answer sets

There is no maximally preferred answer set

- R₁ generates A₁,
- R_2 generates A_2 $(A_1 \neq A_2)$,
- $r_1 \in R_1$, $r_2 \in R_2$ and r_1 is preferred over r_2 ,
- If we use R_2 to generate A_2 and R_1 is not used to generate A_1 then constraint " r_1 is preferred over r_2 " is not met.
- (R_1, R_2) is in a constraint relation on generating sets
- \bullet preference relation on rules \rightarrow constraint relation on generating sets
- \bullet constraint relation on generating set \rightarrow constraint relation on answer sets

Answer set A is not constrained if there is no constraint (B, A) for any answer set B.

Let S be a set of all answer sets that are not constrained.

Set X of answer sets is preference model iff:

- $X \neq \emptyset$,
- $S \subseteq X$,
- if $A \in X$ and (B, A) is constraint then $B \in X$

Let set Y be a set of all preference models.

A is an answer set iff
$$A \in \bigcap_{X \in Y} X$$