Computational Logic Argumentation

Martin Baláž

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

2011

4 0 8

 \sim

つくへ

Defeasible Logic Program:

$$
\begin{array}{rcl}\n & & & & \text{penguin}(X) & \rightarrow & \text{bird}(X) \\
\text{supernatural_penguin}(X) & \rightarrow & & \text{penguin}(X) \\
 & & & & \text{bird}(X) & \Rightarrow & \text{fly}(X) \\
 & & & & \text{penguin}(X) & \Rightarrow & \neg \text{ fly}(X) \\
\text{supernatural_penguin}(X) & \rightarrow & & \text{fly}(X)\n\end{array}
$$

$$
\rightarrow \quad \textit{bird}(\textit{tweety})
$$

- \rightarrow penguin(skippy)
- \rightarrow supernatural penguin(rocky)

おうす 国内

 299

- **O** Constructing arguments
- ² Conflicts between arguments
- ³ Comparing arguments
- **4** The status of arguments

つくへ

A literal is either an atom or a negated atom.

A strict rule is a formula of the form

$$
L_1,\ldots,L_n\,{\to}\,L_0
$$

where $n \geq 0$ and L_i , $0 \leq i \leq n$, are literals.

A defeasible rule is a formula of the form

 $L_1, \ldots, L_n \Rightarrow L_0$

where $n \geq 0$ and L_i , $0 \leq i \leq n$, are literals.

A defeasible logic program is a set of strict and defeasible rules.

Argument

Let P be a defeasible logic program. An *argument* is

• $[A_1, \ldots, A_n \rightarrow L]$ if A_1, \ldots, A_n are arguments and there exists a strict rule r: $Conc(A_1), \ldots, Conc(A_n) \rightarrow L$ in $Ground(P)$.

$$
Conc(A) = L
$$

\n
$$
Concs(A) = Concs(A_1) \cup \cdots \cup Concs(A_n) \cup \{L\}
$$

\n
$$
SubArgs(A) = SubArgs(A_1) \cup \cdots \cup SubArgs(A_n) \cup \{A\}
$$

\n
$$
DefRules(A) = DefRules(A_1) \cup \cdots \cup DefRules(A_n)
$$

• $[A_1, \ldots, A_n \Rightarrow L]$ if A_1, \ldots, A_n are arguments and there exists a defeasible rule r: $Conc(A_1), \ldots, Conc(A_n) \Rightarrow L$ in Ground(P).

$$
Conc(A) = L
$$

\n
$$
Concs(A) = Concs(A_1) \cup \cdots \cup Concs(A_n) \cup \{L\}
$$

\n
$$
SubArgs(A) = SubArgs(A_1) \cup \cdots \cup SubArgs(A_n) \cup \{A\}
$$

\n
$$
DefRules(A) = DefRules(A_1) \cup \cdots \cup DefRules(A_n) \cup \{r\}
$$

An argument A attacks an argument B iff $Conc(A) = \neg Conc(B)$.

An argument A defeats an argument B iff there exist $A' \in SubArgs(A)$ and $B' \in SubArgs(B)$ such that A' attacks B' and $B' \nprec A'$.

An argument A strictly defeats an argument B iff A defeats B and B does not defeat A.

Preferences on rules

- **•** Strict rules preferred over defeasible rules.
- Informations from more reliable source preferred over information from less reliable source.
- Newer information preferred over older information.

 \bullet . . .

Preferences on arguments

- Arguments containing only strict rules are preferred over arguments containing a defeasible rule.
- Specific arguments preferred over general arguments.
- Arguments are compared with respect to the last used defeasible rules.
- Arguments are compared with respect to the weakest used defeasible rule.

An argument A is *acceptable with respect to* a set of arguments S iff each argument defeating A is strictly defeated by an argument from S.

Let P be a defeasible logic program. The characteristic function F_P is defined as follows:

 $F_P(S) = \{A \in \text{Args}_P \mid A \text{ is acceptable with respect to } S\}$

The iteration of a characteristic function is defined as follows:

$$
F_P \uparrow 0 = \emptyset
$$

\n
$$
F_P \uparrow (n+1) = F_P(F_P \uparrow n)
$$

\n
$$
F_P \uparrow \omega = \bigcup_{n < \omega} F_P \uparrow n
$$

An argument is *justified* if it is in the least fixpoint of F_P .

A defeasible logic program P is finitary iff each argument in $Arg_{\mathcal{P}}$ is attacked by at most finite number of arguments in $ArgS_D$.

Let JustArgs_p be the set of all justified arguments of a defeasible logic program P. Then $F_P \uparrow \omega \subseteq \textit{JustArgs}_P$. If P is finitary, then $JustArgs_{\mathsf{P}} \subset \mathsf{F}_{\mathsf{P}} \uparrow \omega.$

Dialog

A move is a pair $\mu = (Player, Argument)$ where Player $\in \{Proponent, Oponent\}$ and Argument is an argument. We will denote player(μ) = Player and argument(μ) = Argument.

A dialog is a finite non-empty sequence of moves $\mu_0, \mu_1, \ldots, \mu_n$, $n > 0$, where

- player(μ_0) = Proponent and player(μ_{i+1}) \neq player(μ_i)
- if player(μ_i) = player(μ_i) for $i \neq j$, then argument $(\mu_i) \neq$ argument (μ_i)
- if player(μ_{i+1}) = Proponent, then argument(μ_{i+1}) strictly defeats argument (u_i)
- if player(μ_{i+1}) = Oponent, then argument(μ_{i+1}) defeats argument (u_i)

イロト イ母 トイヨ トイヨ トーヨ

 Ω

A dialog tree is a finite tree such that

- nodes are moves
- each branch is a dialog
- if player(μ) = Proponent for a node μ , then for all defears A of argument(μ) holds (Oponent, A) is a child of μ .

A player wins a dialog iff the other player cannot move. A player wins a dialog tree iff it wins all branches of the tree.

An argument A is *provably justified* if there exists a dialog tree with root (Proponent, A) won by Proponent. A literal L is provably justified if it is a conclusion of a provably justified argument.

All provably justified arguments are justified.

For finitary argumentation framework, justified arguments are provably justified.