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Defeasible Logic Program

Defeasible Logic Program:

penguin(X ) → bird(X )
supernatural_penguin(X ) → penguin(X )

bird(X ) ⇒ fly(X )
penguin(X ) ⇒ ¬ fly(X )

supernatural_penguin(X ) ⇒ fly(X )

→ bird(tweety)
→ penguin(skippy)
→ supernatural_penguin(rocky)
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Argumentation Process

1 Constructing arguments
2 Conflicts between arguments
3 Comparing arguments
4 The status of arguments
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Defeasible Logic Program

A literal is either an atom or a negated atom.

A strict rule is a formula of the form

L1, . . . , Ln→ L0

where n ≥ 0 and Li , 0 ≤ i ≤ n, are literals.

A defeasible rule is a formula of the form

L1, . . . , Ln⇒ L0

where n ≥ 0 and Li , 0 ≤ i ≤ n, are literals.

A defeasible logic program is a set of strict and defeasible rules.
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Argument

Let P be a defeasible logic program. An argument is
[A1, . . . ,An→ L] if A1, . . . ,An are arguments and there exists
a strict rule r : Conc(A1), . . . ,Conc(An)→ L in Ground(P).

Conc(A) = L
Concs(A) = Concs(A1) ∪ · · · ∪ Concs(An) ∪ {L}

SubArgs(A) = SubArgs(A1) ∪ · · · ∪ SubArgs(An) ∪ {A}
DefRules(A) = DefRules(A1) ∪ · · · ∪ DefRules(An)

[A1, . . . ,An⇒ L] if A1, . . . ,An are arguments and there exists
a defeasible rule r : Conc(A1), . . . ,Conc(An)⇒ L in
Ground(P).

Conc(A) = L
Concs(A) = Concs(A1) ∪ · · · ∪ Concs(An) ∪ {L}

SubArgs(A) = SubArgs(A1) ∪ · · · ∪ SubArgs(An) ∪ {A}
DefRules(A) = DefRules(A1) ∪ · · · ∪ DefRules(An) ∪ {r}
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Conflicts

An argument A attacks an argument B iff Conc(A) = ¬Conc(B).

An argument A defeats an argument B iff there exist
A′ ∈ SubArgs(A) and B ′ ∈ SubArgs(B) such that A′ attacks B ′

and B ′ 6≺ A′.

An argument A strictly defeats an argument B iff A defeats B and
B does not defeat A.
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Comparing Arguments

Preferences on rules
Strict rules preferred over defeasible rules.
Informations from more reliable source preferred over
information from less reliable source.
Newer information preferred over older information.
. . .

Preferences on arguments
Arguments containing only strict rules are preferred over
arguments containing a defeasible rule.
Specific arguments preferred over general arguments.
Arguments are compared with respect to the last used
defeasible rules.
Arguments are compared with respect to the weakest used
defeasible rule.
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Characteristic Function

An argument A is acceptable with respect to a set of arguments S
iff each argument defeating A is strictly defeated by an argument
from S .

Let P be a defeasible logic program. The characteristic function FP
is defined as follows:

FP(S) = {A ∈ ArgsP | A is acceptable with respect to S}

The iteration of a characteristic function is defined as follows:

FP ↑ 0 = ∅
FP ↑ (n + 1) = FP(FP ↑ n)

FP ↑ ω =
⋃

n<ω
FP ↑ n

An argument is justified if it is in the least fixpoint of FP .
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Properties

A defeasible logic program P is finitary iff each argument in ArgsP
is attacked by at most finite number of arguments in ArgsP .

Let JustArgsP be the set of all justified arguments of a defeasible
logic program P . Then FP ↑ ω ⊆ JustArgsP . If P is finitary, then
JustArgsP ⊆ FP ↑ ω.
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Dialog

A move is a pair µ = (Player ,Argument) where
Player ∈ {Proponent,Oponent} and Argument is an argument.
We will denote player(µ) = Player and argument(µ) = Argument.

A dialog is a finite non-empty sequence of moves µ0, µ1, . . . , µn,
n > 0, where

player(µ0) = Proponent and player(µi+1) 6= player(µi )

if player(µi ) = player(µj) for i 6= j , then
argument(µi ) 6= argument(µj)

if player(µi+1) = Proponent, then argument(µi+1) strictly
defeats argument(µi )

if player(µi+1) = Oponent, then argument(µi+1) defeats
argument(µi )
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Dialog Tree

A dialog tree is a finite tree such that
nodes are moves
each branch is a dialog
if player(µ) = Proponent for a node µ, then for all defears A
of argument(µ) holds (Oponent,A) is a child of µ.

A player wins a dialog iff the other player cannot move.
A player wins a dialog tree iff it wins all branches of the tree.
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Properties

An argument A is provably justified if there exists a dialog tree with
root (Proponent,A) won by Proponent.
A literal L is provably justified if it is a conclusion of a provably
justified argument.

All provably justified arguments are justified.

For finitary argumentation framework, justified arguments are
provably justified.
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